• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 32 Issue 4
Sep.  2019
Article Contents
Turn off MathJax

Citation:

Phosphate Solubilizing Characteristics and Growth Promoting Effect of Aspergillus neoniger on Phyllostachys edulis Seedling

  • Corresponding author: ZHANG Yang, zhangyang0558@163.com
  • Received Date: 2019-01-25
    Accepted Date: 2019-03-14
  • Objective The aim of this study is to investigate the phosphate-solubilizing characteristics and growth promoting effect of Aspergillus neoniger (JXBR16) from rhizosphere soil of Phyllostachys edulis. Method The phosphate-solubilizing ability of strain JXBR16 on five different types of mineral phosphate, including Ca3(PO4)2, CaHPO4, FePO4, AlPO4 and calcium phytate, were compared and the effects of carbon sources, nitrogen sources, initial pH, liquid filling volume, temperature and salt ions on phosphate solubilizing ability of strain JXBR16 were studied using the liquid fermentation experiment. Also, the effects of strain JXBR16 on nutrient acquirement and growth of Ph. edulis were evaluated using pot experiment. Result The strain JXBR16 showed the greatest ability to solubilize FePO4 and CaHPO4 with 3 208.31 and 3 027.09 mg·L-1, respectively. The strain JXBR16 displayed the highest phosphate-dissolving capacity when the initial pH reached 3.5, the volume of liquid was 2/5, the temperature was 25℃, the NaCl concentration was 0.01.0 g·L-1, sugar and yeast powder were used as carbon and nitrogen sources, respectively. Meanwhile, compared with control, the rhizosphere soil available phosphorus, mineral nitrogen, root, stem, and leaf phosphorus contents increased by 37%, 41%, 95%, 102% and 43%, respectively in Ph. edulis seedling inoculated with strain JXBR16 for 180-days. In addition, the ground diameter, seedling height and biomass accumulation were higher by 44.44%, 47.27% and 50.40%, respectively in strain JXBR16 treatment than control. Conclusion A. neoniger can effectively enhance soil phosphorus supply, promote nutrient uptake and utilization, and improve the growth of Ph. edulis in red soil region. It has great potential to be used in development of biological fertilizer for bamboo forests in southern China.
  • 加载中
  • [1]

    Bhat S A, Singh J, Vig A P. Earthworms as organic waste managers and biofertilizer producers[J]. Waste and Biomass Valorization, 2018, 9(7):1073-1086 doi: 10.1007/s12649-017-9899-8
    [2]

    Ram H, Malik S S, Dhaliwal S S, et al. Growth and productivity of wheat affected by phosphorus-solubilizing fungi and phosphorus levels[J]. Plant Soil and Environment, 2015, 61(3): 122-126.
    [3]

    Biswas J K, Banerjee A, Rai M, et al. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion[J]. Geodma, 2018, 330: 117-124. doi: 10.1016/j.geoderma.2018.05.034
    [4]

    Efthymiou A, Grønlund M, Müller-Stöver D S, et al. Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains[J]. Soil Biology and Biochemistry, 2018, 116: 139-147. doi: 10.1016/j.soilbio.2017.10.006
    [5]

    Cordell D, Drangert J O, White S. The story of phosphorus: Global food security and food for thought[J]. Global Environmental Change, 2009, 19(2): 292-305. doi: 10.1016/j.gloenvcha.2008.10.009
    [6]

    Richardson J, Stead D E, Coutts R H A. Incidence of the cblA major subunit pilin gene amongst Burkholderia species[J]. Fems Microbiology Letters, 2001, 196(1): 61-66. doi: 10.1111/j.1574-6968.2001.tb10541.x
    [7]

    Koch M, Kruse J, Eichler-Löbermann B, et al. Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: Evidence from sequential fractionation, P K-edge XANES, and 31P NMR spectroscopy[J]. Geofisica Internacional, 2018, 316: 115-126.
    [8]

    Sharma S B, Sayyed R Z, Trivedi M H, et al. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils[J]. Springerplus, 2013, 2(1): 587. doi: 10.1186/2193-1801-2-587
    [9]

    Zhang Y, Chen F S, Wu X Q, et al. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments[J]. Plos One, 2018, 13(7): e199625.
    [10]

    Gómez-Muñoz B, Pittroff S M, Neergaard A D, et al. Penicillium bilaii effects on maize growth and P uptake from soil and localized sewage sludge in a rhizobox experiment[J]. Biology and Fertility of Soils, 2017, 53(1): 1-13. doi: 10.1007/s00374-016-1153-1
    [11]

    Wang X, Wang C, Sui J, et al. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities[J]. Amb Express, 2018, 8(1): 63. doi: 10.1186/s13568-018-0593-4
    [12] 李云玲, 侯沁文, 刘瑞祥, 等.草木樨中华根瘤菌CHW10B溶磷特性及其对南方红豆杉的促生作用[J].林业科学研究. 2017, 30(5): 751-758.

    [13] 张扬, 郭春兰, 陈伏生, 等.毛竹根际2株溶磷解钾促生细菌的筛选鉴定[J].江西农业大学学报, 2018, 40(4): 759-768.

    [14]

    Liu Z, Li Y C, Zhang S, et al. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils[J]. Applied Soil Ecology, 2015, 96: 217-224. doi: 10.1016/j.apsoil.2015.08.003
    [15] 范少辉, 刘广路, 苏文会, 等.竹林培育研究进展[J].林业科学研究, 2018, 31(1): 137-144.

    [16] 姚钧能, 俞卫良, 张君波, 等.氮沉降和经营强度对毛竹林凋落叶生态化学计量特征的影响[J].应用生态学报, 2018, 29(2): 467-473.

    [17]

    Song X, Zhou G, Jiang H, et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges[J]. Environmental Reviews, 2011, 19(1): 418-428.
    [18] 曹永慧, 萧江华, 陈双林, 等.竹阔混交林阔叶树下土壤养分对毛竹生长的影响[J].南京林业大学学报:自然科学版, 2007, 31(6): 43-47.

    [19] 郭晓敏.毛竹林平衡施肥与营养管理[M].北京:科学出版社, 2013.

    [20] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.

    [21] 刘煜, 胡小飞, 陈伏生, 等.马尾松和苦槠林根际土壤矿化和根系分解CO2释放的温度敏感性[J].应用生态学报, 2013, 24(6): 1501-1508.

    [22] 李小冬, 王小利, 陈锡, 等.转录组解析白三叶根际溶磷菌株RW8的解磷机制[J].草业学报, 2017, 26(8): 168-179.

    [23]

    Mendes G D O, Freitas A L M D, Pereira O L, et al. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources[J]. Annals of Microbiology, 2014, 64(1): 239-249.
    [24] 薛冬, 黄向东, 杨瑞先, 等.牡丹根际溶磷放线菌的筛选及其溶磷特性[J].应用生态学报, 2018, 29(5): 1645-1652.

    [25] 曾庆伟, 温心怡, 吴小芹. 1株Pseudomonas frederiksbergensis JW-SD2的解磷特性及解磷条件研究[J].微生物学杂志, 2016, 36(1): 11-16. doi: 10.3969/j.issn.1005-7021.2016.01.003

    [26]

    Ahuja A, Ghosh S B, D'Souza S F. Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization[J]. Bioresource Technology, 2007, 98(17): 3408-3411. doi: 10.1016/j.biortech.2006.10.041
    [27]

    Illmer P, Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soils[J]. Soil Biology and Biochemistry, 1992, 24(4): 389-395. doi: 10.1016/0038-0717(92)90199-8
    [28]

    Li X, Luo L, Yang J, et al. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2[J]. Applied Biochemistry and Biotechnology, 2015, 175(5): 2755. doi: 10.1007/s12010-014-1465-2
    [29]

    Turner B, Paphazy M, Haygarth P, et al. Inositol phosphates in the environment[J]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 2002, 357(1420): 449-469. doi: 10.1098/rstb.2001.0837
    [30]

    Rinu K, Malviya M K, Sati P, et al. Response of cold-tolerant Aspergillus spp. to solubilization of Fe and Al phosphate in presence of different nutritional sources[J]. Isrn Soil Science, 2013, (4): 135-143.
    [31]

    Cunningham J E, Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii[J]. Applied and Environmental Microbiology, 1992, 58(5): 1451-1458.
    [32]

    Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989-996. doi: 10.1104/pp.111.175448
    [33]

    Liu F P, Liu H Q, Zhou H L, et al. Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils[J]. Biology and Fertility of Soils, 2014, 50(6): 927-937. doi: 10.1007/s00374-014-0913-z
    [34]

    Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537. doi: 10.1016/j.scitotenv.2017.08.095
    [35]

    Bhattacharyya P N, Jha D K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350.
    [36]

    Orhan F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum)[J]. Brazilian Journal of Microbiology, 2016, 47(3): 621-627. doi: 10.1016/j.bjm.2016.04.001
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4) / Tables(2)

Article views(4601) PDF downloads(29) Cited by()

Proportional views

Phosphate Solubilizing Characteristics and Growth Promoting Effect of Aspergillus neoniger on Phyllostachys edulis Seedling

    Corresponding author: ZHANG Yang, zhangyang0558@163.com
  • 1. Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
  • 2. Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China

Abstract:  Objective The aim of this study is to investigate the phosphate-solubilizing characteristics and growth promoting effect of Aspergillus neoniger (JXBR16) from rhizosphere soil of Phyllostachys edulis. Method The phosphate-solubilizing ability of strain JXBR16 on five different types of mineral phosphate, including Ca3(PO4)2, CaHPO4, FePO4, AlPO4 and calcium phytate, were compared and the effects of carbon sources, nitrogen sources, initial pH, liquid filling volume, temperature and salt ions on phosphate solubilizing ability of strain JXBR16 were studied using the liquid fermentation experiment. Also, the effects of strain JXBR16 on nutrient acquirement and growth of Ph. edulis were evaluated using pot experiment. Result The strain JXBR16 showed the greatest ability to solubilize FePO4 and CaHPO4 with 3 208.31 and 3 027.09 mg·L-1, respectively. The strain JXBR16 displayed the highest phosphate-dissolving capacity when the initial pH reached 3.5, the volume of liquid was 2/5, the temperature was 25℃, the NaCl concentration was 0.01.0 g·L-1, sugar and yeast powder were used as carbon and nitrogen sources, respectively. Meanwhile, compared with control, the rhizosphere soil available phosphorus, mineral nitrogen, root, stem, and leaf phosphorus contents increased by 37%, 41%, 95%, 102% and 43%, respectively in Ph. edulis seedling inoculated with strain JXBR16 for 180-days. In addition, the ground diameter, seedling height and biomass accumulation were higher by 44.44%, 47.27% and 50.40%, respectively in strain JXBR16 treatment than control. Conclusion A. neoniger can effectively enhance soil phosphorus supply, promote nutrient uptake and utilization, and improve the growth of Ph. edulis in red soil region. It has great potential to be used in development of biological fertilizer for bamboo forests in southern China.

  • 磷是植物生长必需的大量元素,在植物光合作用、根系延伸及能量传递等方面起着重要作用[1-2]。大多数磷以磷酸钙、磷酸铝及磷酸铁等难溶性磷酸盐形式存在于自然界土壤中,只有少数H2PO4-和HPO42-等可溶性磷能被植物吸收利用[3]。磷缺乏是限制植物生产力提高的主要因素之一,大量的磷肥施入土壤中满足了植物的生长需求,却引起了如水体污染等诸多环境问题[4]。另外,磷肥主要是从磷矿石中提取,而磷矿石的储量有限[5],开采矿石和磷肥生产是一种高成本和不可持续的过程。使用一种替代或可再生能源提高磷的循环利用,减少对磷矿石和磷肥的依赖是目前急需解决的问题[4]

    土壤微生物能通过促进植物根系生长和磷的矿化等方式来提高其对养分的利用[6],其中溶磷微生物能通过有机磷矿化和无机磷的增溶从土壤难溶性磷酸盐中水解出可溶性磷[7-8]。如Zhang发现2株溶磷真菌对Ca3(PO4)2、FePO4、AlPO4和植酸钙均具有较好的溶解作用[9];在田间或温室盆栽试验条件下,石灰性土壤中施用巴西青霉菌(Penicillium bilaii)能显著促进小麦、大豆及豌豆等农作物的生长及磷的获取[4, 10]。Wang发现溶磷真菌CS-1能分泌草酸、酒石酸和柠檬酸,对磷酸钙具有较好的溶解能力,且能显著促进小麦生物量的累积[11]。此外,部分溶磷微生物还具有分泌嗜铁素、吲哚乙酸(IAA)和解钾等多种功能进而促进植物生长[3]。李云玲筛选出一株溶磷细菌CHW10B具有产嗜铁素和IAA的能力,且能促进南方红豆杉生长及生物量提高[12]。张扬从毛竹根际土壤中筛选出2株溶磷细菌兼具解钾,分泌IAA及抑制病原菌等功能,对毛竹有较好的促生作用[13]。因此,通过筛选和应用溶磷微生物改善土壤磷素供应或许是解决我国缺磷区养分供应不足的有效途径[14]

    毛竹(Phyllostachys edulis (Carrière) J. Houz.)是我国分布最广,面积最大的竹种[15],主要分布于亚热带地区,占全国竹林面积70%左右,面积已达443万hm2[16]。毛竹是典型的克隆植物,具有生长迅速及更新周期短等特点,是南方山区林农收入的重要来源,也是我国重要的经济林树种[17]。由于长期的不合理经营方式导致毛竹林地养分流失,地力衰退,生产力不稳定,土壤磷素缺乏导致竹材、竹笋产量逐年呈下降趋势,严重威胁着竹林的持续经营利用[18]。研究表明,磷素已成为限制毛竹林资源质量及生产力提升的主要因子之一[9, 19]。目前关于毛竹林地溶磷真菌的研究少有报道。利用溶磷真菌提高竹林磷素利用率,对于改善毛竹林地土壤养分,提高竹林生产力,促进竹农增收具有重要的现实意义,也是一种低成本、环保和可持续的生物技术策略。本课题组前期从毛竹根际土壤中分离到1株解磷真菌新黑曲霉(Aspergillus neoniger)[9],但关于该菌株解磷等相关功能尚未系统研究,对毛竹是否具有促生作用也尚不明确,限制了开发和利用。本研究探讨该新黑曲霉(JXBR16)的解磷特性和解磷条件,并通过盆栽试验研究其对毛竹实生苗的促生作用,揭示该菌株的溶磷效果及其促生机理,以期为该菌株作为生物肥料应用时发挥最佳溶磷功效提供参考,为改善土壤磷素营养和维持毛竹林可持续经营发展提供理论依据和实践指导。

1.   材料与方法
  • 新黑曲霉(JXBR16),前期从毛竹根际土壤中筛选得到,保存于江西农业大学林学院森林保护实验室;毛竹实生苗(苗龄90 d),栽培于江西农业大学温室。基质土壤采自江西农业大学校园竹林,全氮含量0.47 g·kg-1,有机质含量6.88 g·kg-1,全磷含量0.26 g·kg-1。土壤、蛭石与砂子按照2:1:1比例混合均匀后备用;解磷能力测定(NBRIP)培养基配方如下:葡萄糖10 g,Ca3(PO4)2 5 g,MgCl2 5 g,KCl 0.2 g,MgSO4·7H2O 0.25 g,(NH4)2SO4 0.1 g,蒸馏水1 000 mL,pH 7.0,马铃薯葡萄糖琼脂(PDA)培养基等培养基配方见参考文献[20]。

  • 按照1%的接种比例,将种子液分别接入以Ca3(PO4)2、FePO4、CaHPO4、AlPO4和植酸钙(Calcium phytate)作为唯一不溶性磷源的NBRIP培养基,5种磷源中磷素的含量均为200 mg·L-1;以不接菌处理作为对照。25℃,120 r·min-1条件下震荡培养7 d,发酵液离心10 min(4℃,10 000 r·min-1),取上清液,采用钼锑抗比色法测定发酵液中可溶性磷含量[20]

  • 保持NBRIP培养基中Ca3(PO4)2为磷源,其他成分不变,将蔗糖、果糖、可溶性淀粉、麦芽糖和葡萄糖分别按10 g·L-1的比例加入到NBRIP液体培养基中作为唯一碳源;保持NBRIP培养基Ca3(PO4)2为磷源,其他成分不变,将(NH4)2SO4、KNO3、牛肉膏、酵母粉、蛋白胨分别按10 g·L-1的比例加入NBRIP液体培养基中作为唯一氮源。以1%接种量向装有50 mL培养基的100 mL三角瓶中接入JXBR16种子液。各处理均设3个重复,以不接菌处理作为对照。25℃、120 r·min-1条件下震荡培养7 d,发酵液离心10 min(4℃,10 000 r·min-1),测定发酵液中可溶性磷含量,方法同1.2。

  • 在100 mL三角瓶中分别装入20、40、50、60和80 mL的NBRIP培养基,使得装液量与三角瓶体积比分别为1/5、2/5、1/2、3/5和4/5;初始pH分别调到1.5、2.5、3.5、4.5、5.5、6.5,培养基中Ca3(PO4)2为磷源,其他成分保持不变;设置20、25、30、35、40℃ 5个不同温度下进行震荡培养,培养基中Ca3(PO4)2为磷源,其他成分保持不变;向NBRIP培养基中分别按质量百分比浓度0%、1.0%、2.0%、3.0%、4.0%、5.0%、6.0%、7.0%、8.0%和9.0%加入NaCl,保持培养基中Ca3(PO4)2为磷源,其他成分不变,均按1%接种量分别接入JXBR04种子液进行震荡培养。各处理设3个重复和1个空白对照,25℃、120 r·min-1条件下震荡培养7 d后,发酵液离心10 min(4℃,10 000 r·min-1),测定发酵液中可溶性磷含量。方法同1.2。

  • 将菌株JXBR16活化后,接种PDA培养基平板上,置于培养箱中25℃条件下培养7 d,产孢后加入无菌生理盐水,用毛笔刷轻轻洗落孢子,获得含分生孢子和少量菌丝的悬浮液,取上层孢子悬浮液进行孢子计数,将所得孢子悬浮液调成为孢子浓度为1.0×107个孢子·mL-1悬浮液制成液体菌剂。

    菌剂处理为对照(CK)和施用溶磷菌JXBR16。采用灌根的方式分别施用于毛竹根际土壤里,以等量无菌生理盐水为对照,菌剂施用量为10 mL·株-1。采用完全随机设计,各处理20株。在栽培180 d时测定毛竹地径、苗高,用抖落法采集其根际新鲜土壤[21],用于测定土壤有效磷和矿质氮等养分。将毛竹植株体洗净,在105℃下杀青30 min,80℃烘干至恒质量,测定其生物量,将毛竹分为根系、茎干和叶片3个不同器官组织,经球磨仪粉碎后过0.5 mm筛,分别测定其磷含量。土壤和植物组织的养分测定方法见参考文献[20]。

  • 运用Microsoft Excel 2013整理数据,利用Origin 8.5和SPSS 18.0软件做统计分析,采用单因素多重比较对解磷特性试验数据进行分析,促生效应试验数据采用配对T检验分析(P < 0.05)。图表中数据为平均值±标准误。

2.   结果与分析
  • 菌株JXBR16对Ca3(PO4)2、CaHPO4、FePO4、AlPO4和植酸钙等5种难溶性矿质盐均具有较好的溶解能力且差异显著(图 1)。该菌株对FePO4、CaHPO4的溶解能力最强,解磷量分别为3 208.31和3 027.09 mg·L-1;对植酸钙和AlPO4的解磷能力其次,解磷量分别为1 862.73和1 342.43mg·L-1;对Ca3(PO4)2的溶解作用最低,解磷量也达至850.84 mg·L-1

    Figure 1.  Soluble phosphorus content in culture liquid of strain JXBR16 cultivated under different phosphorus sources

  • 不同碳源对菌株JXBR16溶解磷酸钙能力的影响差异显著(图 2A)。以蔗糖和葡萄糖分别为唯一碳源时,菌株JXBR16对磷酸钙的溶解能力达至最强,解磷量分别为1 054.4 mg·L-1和1 021.47 mg·L-1;以麦芽糖、果糖和可溶性淀粉为碳源时,该菌株的解磷量显著降低,尤其是以可溶性淀粉为碳源时,解磷量最小,为567.75 mg·L-1。在不同氮源条件下菌株JXBR16对磷酸钙的解磷能力差异显著(图 2B),以硫酸铵为唯一氮源时,菌株JXBR16的解磷能力最强,解磷量为943.58 mg·L-1;其次是以牛肉膏和蛋白胨为氮源时,该菌株的解磷的能力分别为847.64 mg·L-1和844.27 mg·L-1;而以酵母粉为氮源时解磷能力降至最低,为109.74 mg·L-1

    Figure 2.  Soluble phosphorus concentrations in culture liquid of strain JXBR16 cultivated in different carbon (A) and nitrogen sources (B)

  • 菌株JXBR16在不同环境条件下其解磷能力差异显著(图 3)。该菌株在装液量为2/5时对磷酸钙具有较好的溶解能力,解磷量1 053.18 mg·L-1,显著高于其他装液量解磷量(图 3A)。菌株的解磷能力受初始pH值的显著影响;当初始pH值为3.5时,该菌株具有最大的解磷能力,解磷量为749.98 mg·L-1,其次为初始pH值4.5、1.5、和6.5时,而初始pH值5.5和2.5时最低(图 3B)。温度在25 ℃和30 ℃时该菌株对磷酸钙的溶解量显著高于其它温度处理的溶解量,解磷能力分别为758.33和716.67 mg·L-1,其次为温度35 ℃和20 ℃时,而温度为40 ℃时解磷能力最低(图 3C)。随着NaCl浓度的增加,该菌株解磷能力总体呈现下降的趋势,在NaCl浓度为0.0 g·L-1、1.0 g·L-1和2.0 g·L-1时,解磷能力分别为1 035.2、984.13和920.72 mg·L-1,显著高于其余处理(图 3D)。

    Figure 3.  Soluble phosphorus concentrations in culture liquid of strain JXBR16 cultivated under different liquid volume in flask (A), pH (B), temperature (C) and NaCl levels (D)

  • 与对照相比,施用菌剂JXBR16能显著促进毛竹实生苗的生长(图 4)。苗高、地径及总生物量分别比对照提高了47.27%、44.44%和50.40%,地上和地下生物量分别比对照提高了56.05%和39.2%,总生物量比对照提高了50.4%(表 1)。

    Figure 4.  Inoculated with phosphate-solubilizing fungi JXBR16 for moso bamboo growth promotion in pot experiment (180 d)

    处理
    Treatment
    苗高
    Seedling height/cm
    地径
    Ground diameter/cm
    地上生物量
    Aboveground biomass/g
    地下生物量
    Underground biomass/g
    总生物量
    Total biomass/g
    施用菌剂Adding strain35.27±1.21a2.21±0.26a3.87±0.16a1.74±0.09a5.61±0.14a
    对照CK23.95±0.73b1.53±0.17b2.48±0.14b1.25±0.06b3.73±0.22b

    Table 1.  The effect of adding strain JXBR16 on the growth of moso bamboo seedling

    同时,发现施用菌剂JXBR16后,毛竹根际土壤有效磷、铵态氮及矿质氮都显著提高,有效磷、铵态氮和矿质氮含量分别比对照提高了36.68%、84.26%、41.07%;此外,植株体磷含量也显著提高,毛竹叶片、茎干和根系磷含量分别比对照提高了43.28%、102.17%和95.35%(表 2)。

    观测指标Variables对照CK施用菌剂Adding strainT检验T-test
    叶片磷含量Leaf P/(g·kg-1)2.01±0.122.88±0.21P < 0.05
    茎磷含量Stem P/(g·kg-1)0.92±0.051.86±0.27P < 0.05
    根系磷含量Root P/(g·kg-1)0.86±0.061.68±0.07P < 0.05
    有效磷Available P/(mg·kg-1)2.29±0.253.13±0.11P < 0.05
    铵态氮NH4+-N/ (mg·kg-1)1.08±0.091.99±0.15P < 0.05
    硝态氮NO3--N/ (mg·kg-1)2.11±0.022.51±0.04P>0.05
    矿质氮Mineral N/ (mg·kg-1)3.19±0.054.50±0.18P < 0.05

    Table 2.  Effect of inoculation with strain JXBR16 on nutrient uptake of moso bamboo seedlings and rhizosphere soil nutrient

3.   讨论
  • 植物根际中存在着大量微生物,其中解磷微生物是植物最重要的促生微生物之一,其种类和数量很多,迄今报道约有13种细菌和5种真菌[22]。解磷微生物对难溶性磷源的溶解能力除了受遗传特性影响外,还受到培养条件、营养物质等因子制约[23]。如解磷放线菌PSPSA1在碳氮源分别为乳糖和蛋白胨时,其解磷量可达至202.6 mg·L-1,纤维素和尿素为碳氮源其解磷能力最低[24];而解磷细菌CHW10B在碳氮源分别为葡萄糖和硫酸铵时,其解磷能力最大,以淀粉和蛋白胨为碳氮源时基本没有解磷能力[12]。本研究中的新黑曲霉JXBR16以蔗糖和葡萄糖为碳源,(NH4)2SO4为氮源时解磷能力最强。这也与相关报道相一致,即当氮源为(NH4)2SO4时,菌株的解磷能力要高于其它氮源[25]。通过该菌株对不同磷源的溶解发现其解磷量与发酵液pH值也存在显著的负相关,推测菌株JXBR16通过NH4+的同化作用分泌质子,使培养基介质的pH值降低,从而提高对难溶性磷酸盐的溶解能力[26]。这是否会加剧土壤酸化而带来负面效应值得关注。此外以果糖、麦芽糖、可溶性淀粉和葡萄糖分别作为碳源和以KNO3、牛肉膏和蛋白胨作为氮源时其解磷能力也较好,这为今后该菌株的开发及应用提供了广泛的碳氮源。pH值、温度、溶氧量及盐碱度等外部的环境条件也是影响解磷微生物溶磷功能的重要因素[25]。如Illmer等发现溶氧量对解磷细菌Pseudomonas sp.的解磷能力有着较显著的影响[27]。本试验发现菌株JXBR16能够在较低的pH值、装液量、温度和盐离子浓度变化范围内仍能发挥较强的解磷作用。毛竹主要分布我国南方酸性土壤区域,土壤pH值介于3.75.2,温度、酸度和氧气浓度均具有较大变化[9],解磷菌株JXBR16能在不同环境因子下发挥较好的解磷能力,这为菌株JXBR16对今后应用于毛竹林地中发挥解磷功效,改善土壤肥力奠定优势。

    研究表明,解磷微生物的解磷能力强弱与土壤类型密切相关,并且解磷微生物对土壤中不同类型磷源的溶解能力也是不同的[23]。如解磷真菌黑曲霉Aspergillus niger An2对Ca3(PO4)2和AlPO4的溶解能力为1 722和2 356 mg·L-1,而对FePO4和Rock phosphates的溶解能力仅为215和179 mg·L-1[28]。本试验中选取的5种难溶性磷酸盐中FePO4、AlPO4和植酸钙相比磷酸钙盐具有更复杂的晶体结构[23],试验结果显示新黑曲霉JXBR16对这5种难溶性磷源具有不同的溶解能力,说明该菌株的解磷能力受磷源的结构组成影响。此外植酸钙作为植酸磷的组成部分在土壤中广泛存在,是土壤中有机磷的重要存在形式[29]。试验结果显示菌株JXBR16除了对磷酸钙盐、磷酸铁盐和磷酸铝盐等无机磷源具有较强的溶解能力,还对植酸钙具有较好的溶解能力,说明该菌株在有机磷的矿化中也能发挥着重要作用。本试验结果表明该菌株能适用不同的土壤类型,包括石灰性土壤和红壤等不同土壤类型。这也为今后该菌株应用于不同类型土壤中促进有效磷的释放提供技术支撑。然而菌株JXBR16对这5种难溶性磷酸盐的解磷机制还未弄清楚,前人研究证实有机酸的分泌是解磷真菌解磷的机制之一[24, 28],有机酸的含量和种类对其与Ca2+、Al3+、Fe3+等金属离子结合能力及对阴离子抑制磷酸根吸附阳离子具有较显著影响[23, 30]。如Cunningham认为解磷真菌Penicillium bilaii分泌的草酸是溶解磷酸钙的主要机制[31]。关于本试验中菌株JXBR16分泌有机酸的种类和数量还有待于进一步研究,以期为该菌株的解磷机理提供有力佐证。

    以往研究显示施用解磷菌株后植株体对磷素的吸收量与植物生长并不总是具有相关性[4, 10]。如Mónicam等人从阿根廷北方酸性土壤中筛选几株解磷能力较强的细菌,通过盆栽试验发现其促进了磷素吸收然而对大豆并无明显的促生长作用[32],而Li等发现解磷细菌能提高核桃对土壤磷素的吸收和促进植株体生长[33]。本研究中施用解磷真菌JXBR16能显著提高毛竹对土壤磷的吸收利用,显著提高毛竹苗高、地径及生物量,促进毛竹实生苗的生长,实验的结果也显示了解磷菌株能通过提高植物对土壤磷素的吸收进而促进植物生长[4]。此外,解磷微生物促进植物生长也取决于不同土壤类型中磷素的含量[4, 31]。如Zhu等人发现解磷真菌Penicillium aculeatum促进植物的生长要依赖于土壤中磷源的含量,当土壤中有效磷含量较低时,解磷微生物才发挥其解磷功能,促进植物生长,而土壤磷源充足时解磷微生物并不能促进植物的生长[34],Efthymiou等人也证实了这一现象,并猜测这是由于解磷微生物与植物根系之间有着特定的相互作用[4]。本试验所用基质为典型的竹林红壤土,有效磷含量较低,试验结果显示施用菌剂JXBR16能显著提高毛竹土壤有效磷和植株体内磷含量,且能显著促进毛竹生长,这也与前人研究得出的结论相一致。本试验发现施用菌剂JXBR16能显著提高土壤中有效磷和铵态氮含量,而磷在植物细胞分裂和增大起着重要作用,而铵态氮被植物吸收后用于合成蛋白质[35-36],推测解磷真菌新黑曲霉JXBR16通过提高土壤中有效磷和铵态氮含量促进毛竹的生长和生物量累积,而相关的影响机制还有待于后续研究。本试验结果对于应用微生物改善毛竹林地土壤磷素营养及开发微生物肥料具有重要的参考价值和指导意义。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return