• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 33 Issue 1
Feb.  2020
Article Contents
Turn off MathJax

Citation:

Family Variation and Selection of Growth and Branching Traits of 5-Year-old Taxus wallichiana var. mairei

  • Corresponding author: ZHOU Zhi-chun, zczhou_risf@163.com
  • Received Date: 2019-06-03
    Accepted Date: 2019-09-29
  • Objective By testing Taxus wallichiana var. mairei elite families to select the fast-growing and genetically stable families suitable for different regions and sites. Method 5-year-old T. wallichiana var. mairei elite family plantations from different habitats were used to study the genetic variation and the family × site interaction. The experimental forests were established in 2014 at 3 sites (Chun'an of Zhejiang Province, Fenyi of Jiangxi Province and Mingxi of Fujian Province). Among the families used in the test, 55 from Chun'an, 39 from Fenyi, and 32 from Mingxi. There were 38 families shared by Chun'an and Fenyi, 14 families shared by Chun'an and Mingxi, 12 families shared by Fenyi and Mingxi. There were 11 families shared by all the three sites. Result The growth and branching traits of 5-year-old T. wallichiana var. mairei showed extremely significant differences among families. The family × site interaction effect on tree height and primary branch number was obvious. And the effect on other growth traits and branching traits was minor. There was a significant positive correlation among the growth traits and among the growth traits, primary branch number and the biggest branch diameter. Generally, the family heritability of the 5-year-old T. wallichiana var. mairei was higher. Compared with family heritability, the estimated heritability of the individual was lower. Taking the tree height as the selection criterion and considering the branching traits, a total of 10 excellent families was selected from the 3 sites. Conclusion There exists significant genetic differences in growth and branching traits among the families. The family heritability of 5-year-old T. wallichiana var. mairei is generally higher, and they are controlled by stronger genetics. The thicker and taller the tree, the more branches it has. The traits of tree height and primary branch number are sensitive to site, and the family × site interaction effect is extremely significant, and the site has a greater impact on it. It is found that the family SY10 performs well and is stable in multiple sites.
  • 加载中
  • [1] 中国科学院植物研究所编辑委员会. 中国植物志: 第七卷[M]. 北京: 科学出版社, 1978.

    [2]

    Zhou Y, Chen G, Yingjuan S U, et al. Microsatellite loci from Taxus chinensis var. mairei (Taxaceae), an endangered and economically important tree species in China[J]. Frontiers in Biology, 2009, 4(2): 214-216. doi: 10.1007/s11515-009-0013-x
    [3]

    Dinh D V, Thi T X B, Minh T N, et al. Genetic diversity in two threatened species in Vietnam: Taxus chinensis and Taxus wallichiana[J]. Forestry science, 2017, 28(2): 265-272.
    [4] 欧建德. 基于多元统计分析的南方红豆杉幼林修枝技术[J]. 南京林业大学学报: 自然科学版, 2016, 40(3):183-187.

    [5] 肖 遥, 楚秀丽, 徐肇友, 等. 南方红豆杉2年生容器苗多点试验的生长节律家系变异[J]. 林业科学研究, 2016, 29(2):238-244. doi: 10.3969/j.issn.1001-1498.2016.02.014

    [6]

    Cannell M G R. Production of branches and foliage by young trees of Pinus contorta and Picea sitchensis: Provenance differences and their simulation[J]. Journal of Applied Ecology, 1974, 11(3): 1091-1115. doi: 10.2307/2401768
    [7] 焦月玲, 周志春, 金国庆, 等. 6个南方红豆杉种源苗期和幼龄生长差异[J]. 林业科学研究, 2005, 18(5):636-640. doi: 10.3321/j.issn:1001-1498.2005.05.024

    [8] 王 艺, 张 蕊, 冯建国, 等. 不同种源南方红豆杉生长差异分析及早期速生优良种源筛选[J]. 植物资源与环境学报, 2012, 21(4):41-47.

    [9] 辛娜娜, 张 蕊, 范辉华, 等. 5年生木荷生长和形质性状的家系变异和选择[J]. 林业科学研究, 2014, 27(3):316-322.

    [10] 李荣丽, 黄寿先, 李志先, 等. 大叶栎家系水平性状变异及优良家系选择研究[J]. 广东农业科学, 2014, 41(17):47-50. doi: 10.3969/j.issn.1004-874X.2014.17.012

    [11] 张 谦, 曾令海, 蔡燕灵, 等. 樟树自由授粉家系生长与形质性状的遗传分析[J]. 中南林业科技大学学报, 2014, 34(1):1-6.

    [12] 肖 遥. 南方红豆杉种源和家系生长遗传变异[D]. 南京: 南京林业大学, 2016.

    [13] 张 敏, 袁 辉. 拉依达(PauTa)准则与异常值剔除[J]. 郑州工业大学学报, 1997, 18(1):84-88.

    [14] 秦国峰. 马尾松培育及利用[M]. 北京: 金盾出版社, 1997.

    [15] 武紫娟. 马尾松半同胞子代测定林变异分析及优良家系选择[D]. 雅安: 四川农业大学, 2016.

    [16] 欧建德, 吴志庄. 南方红豆杉幼龄期家系生长与观赏性状遗传变异[J]. 东北林业大学学报, 2015, 43(12):7-11. doi: 10.3969/j.issn.1000-5382.2015.12.002

    [17] 王明庥. 森林遗传管理的现代基础理论与技术——林木遗传育种学[J]. 南京林业大学学报: 自然科学版, 2001, 25(5):1-5.

    [18]

    Zobel B, Stonecypher R W, Browne C. Inheritance of spiral grain in young loblolly pine[J]. Forest Science, 1968, 14(4): 376-379.
    [19] 秦国峰, 王培蒂, 周志春. 马尾松苗期生长性状的遗传分析[J]. 林业科学, 1989, 25(6):559-563. doi: 10.3321/j.issn:1001-7488.1989.06.015

    [20] 郝俊杰. 陆地棉杂种优势及相关性状的遗传分析[D]. 武汉: 华中农业大学, 2008.

    [21] 张景平, 张 蕊, 周志春, 等. 南方红豆杉幼林生长种源变异和速生种源初选[J]. 浙江林业科技, 2009, 29(2):42-45. doi: 10.3969/j.issn.1001-3776.2009.02.010

    [22] 李红盛, 汪阳东, 徐刚标, 等. 山苍子家系幼林生长性状遗传变异及稳定性分析[J]. 林业科学研究, 2018, 31(5):171-178.

    [23] 徐肇友, 楚秀丽, 肖纪军, 等. 3种青冈及其优树家系早期生长变异与选择[J]. 浙江林业科技, 2017, 37(4):6-11. doi: 10.3969/j.issn.1001-3776.2017.04.002

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1) / Tables(5)

Article views(3902) PDF downloads(60) Cited by()

Proportional views

Family Variation and Selection of Growth and Branching Traits of 5-Year-old Taxus wallichiana var. mairei

    Corresponding author: ZHOU Zhi-chun, zczhou_risf@163.com
  • 1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Hangzhou 311400, Zhejiang, China
  • 2. Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi 336600, Jiangxi, China
  • 3. Research Institute of Taxus Industry, Mingxi 365200, Fujian, China
  • 4. Fuxi Forest Farm of Chun’an County, Zhejiang Province, Chun’an 311700, Zhejiang, China

Abstract:  Objective By testing Taxus wallichiana var. mairei elite families to select the fast-growing and genetically stable families suitable for different regions and sites. Method 5-year-old T. wallichiana var. mairei elite family plantations from different habitats were used to study the genetic variation and the family × site interaction. The experimental forests were established in 2014 at 3 sites (Chun'an of Zhejiang Province, Fenyi of Jiangxi Province and Mingxi of Fujian Province). Among the families used in the test, 55 from Chun'an, 39 from Fenyi, and 32 from Mingxi. There were 38 families shared by Chun'an and Fenyi, 14 families shared by Chun'an and Mingxi, 12 families shared by Fenyi and Mingxi. There were 11 families shared by all the three sites. Result The growth and branching traits of 5-year-old T. wallichiana var. mairei showed extremely significant differences among families. The family × site interaction effect on tree height and primary branch number was obvious. And the effect on other growth traits and branching traits was minor. There was a significant positive correlation among the growth traits and among the growth traits, primary branch number and the biggest branch diameter. Generally, the family heritability of the 5-year-old T. wallichiana var. mairei was higher. Compared with family heritability, the estimated heritability of the individual was lower. Taking the tree height as the selection criterion and considering the branching traits, a total of 10 excellent families was selected from the 3 sites. Conclusion There exists significant genetic differences in growth and branching traits among the families. The family heritability of 5-year-old T. wallichiana var. mairei is generally higher, and they are controlled by stronger genetics. The thicker and taller the tree, the more branches it has. The traits of tree height and primary branch number are sensitive to site, and the family × site interaction effect is extremely significant, and the site has a greater impact on it. It is found that the family SY10 performs well and is stable in multiple sites.

  • 南方红豆杉(Taxus wallichiana var. mairei(Lemée H. Léveillé.)L. K. Fu et Nan Li)为红豆杉科(Taxaceae)红豆杉属(Taxus L.)喜马拉雅红豆杉(T. wallichiana Zucc.)的变种[1],是集材用、药用和观赏于一体的珍稀濒危树种[2-3],也是我国南方重点推广的珍贵用材造林树种。南方红豆杉在自然条件下生长速度缓慢,再生能力差,很长时间以来,较少有规模的人工栽培。人工栽培的南方红豆杉也因其自然整枝力弱而导致其节子多、易形成多杈干等缺陷影响经济价值[4]。因此,加强其优良品种选育,改良其生长和形质指标,可解决南方红豆杉珍贵用材林生长慢和干材品质差等问题[5]

    对于分布范围广泛的树种而言,长期的地理隔离等会导致天然居群间发生严重的遗传分化,种内不同种源间差异显著[6]。焦月玲等[7]基于南方红豆杉种源幼龄生长测定,发现其树高和地径等生长性状均存在显著种源差异,这为早期选择提供了可能。王艺等[8]在浙江龙泉和浙江安吉两地开展了南方红豆杉种源试验,结果表明,两测试点种源树高、胸径和最大侧枝长等性状变异幅度均超过25%,且方差分析也显示大多数性状指标在种源间呈现显著或极显著差异,说明南方红豆杉种源具有丰富的遗传变异,遗传改良潜力较大,最终从24个南方红豆杉种源中选出 6个适宜于两地的早期速生优良种源。南方红豆杉不仅在种源间存在丰富的遗传变异,且种源内不同个体间也存在显著的遗传差异,在优良种源内开展优树选择能更有效利用种内变异[5]。在优良种源选择的基础上开展优树选择,在利用种源效应的同时,可选择出生长表现突出的优良家系和个体,这也是多数树种遗传改良采用的策略。如辛娜娜等[9]对木荷(Schima superba Gardn et Champ.)、李荣丽等[10]对大叶栎(Quercus griffithii Hook. f. et Thoms ex Miq)及张谦等[11]对樟树(Cinnamomum bodinieri Levl.)等珍贵树种进行优树家系遗传变异研究,结果表明,其家系生长均存在显著遗传变异。因此,为了获得更加优良的珍贵树种种质资源,优树选择及其子代测定必不可少[12]。本文利用设置在浙江淳安、江西分宜和福建明溪3个试验点的5年生南方红豆杉优树家系测定林进行了全林调查,系统研究其幼林生长和分枝性状的家系遗传变异规律及家系×地点的互作等,并初步筛选出一批速生优质家系,为南方红豆杉育种策略制定和实生种子园的留优去劣等提供理论依据。

1.   材料与方法
  • 以来自浙江、江西和福建等3个省份、8个产地的南方红豆杉家系为试验材料,2013年在浙江龙泉育苗[12]。2014年将培育的1年生家系容器苗在浙江淳安(29°37' N,119°01' E)、江西分宜(27°49' N,114°41' E)和福建明溪(26°21' N,117°12' E)3个试验点培育成2年生轻基质容器大苗,于2015年2—3月在3个试验点建立南方红豆杉优树家系测定林。3个试验点均属亚热带季风气候区,其中,浙江淳安年均气温17℃,年均降水量1 430 mm,全年无霜期263 d;江西分宜年均气温 17.2℃,年均降水量1 600 mm,全年无霜期270 d;福建明溪年均气温18℃,年均降水量1 800 mm,全年无霜期261 d。浙江淳安点和福建明溪点是栽植在马尾松(Pinus massoniana Lamb.)林冠下,江西分宜点栽植在冰雪灾后的湿地松(P. elliottii Englem.)和马尾松林冠下,3个地点立地条件中等。

  • 浙江淳安点和江西分宜点采用完全随机区组设计,5次重复,8株单列小区,福建明溪点为完全随机设计,单株小区,重复40次,栽植密度为2.0 m×2.5 m,每666.67 m2保留上层松树20株左右,郁闭度0.3左右。浙江淳安、江西分宜和福建明溪3个地点参试的家系数分别为55、39和 32个,浙江淳安和江西分宜、浙江淳安和福建明溪及江西分宜和福建明溪的共有家系数分别为38、14和12个,3个测试点共有的家系数为11个。2018年底对3个试验点的南方红豆杉优树家系试验林进行全林测定,测定指标包括树高、地径、冠幅、当年抽梢长、一级分枝数、最大分枝角、最大分枝长和最大分枝粗等。

  • 在统计分析前,依据拉依达准则[13]去除异常数据。以单株测定值为单元进行性状方差分析[13],最大分枝角经反正弦数据转换,一级分枝数经(X+0.5)1/2数据转换。

    浙江淳安点和江西分宜点性状单点方差分析的统计模型为:

    式中:Yijk代表单点试验第i区组第j家系第k单株的观测值,u为群体平均效应,Bi为第i区组效应,Fj为第j家系的效应,BFij为第i家系和第j区组的互作效应,eijk为机误。

    福建明溪点性状方差分析的统计模型为:

      式中:Yij代表单点试验第i家系第j单株的观测值,u为群体平均效应,Fi为第i家系的效应,eij为机误。

    浙江淳安点和江西分宜点家系遗传力:

    单株遗传力为:

    福建明溪点家系遗传力:

    单株遗传力为:

      式中:n为每小区单株数,b为区组或重复数,$\sigma _F^2$ 为家系方差分量,$\sigma _E^2$ 为机误,$\sigma _{FB}^2$ 为家系与区组互作的方差分量。

    采用 SAS8.0 软件的GLM、VARCOMP过程进行性状方差分析,估算性状各变异来源的方差分量、家系遗传力和单株遗传力、性状间表型和遗传相关系数及家系同一性状在不同地点间的简单相关系数。

2.   结果与分析
  • 方差分析结果(表1)表明:各地点5年生南方红豆杉树高、地径、冠幅以及分枝性状都存在极显著的家系变异。在地处较北的浙江淳安点,5年生家系树高和地径变幅分别为1.47~2.06 m和2.07~3.06 cm,平均树高和地径分别为1.73 m和2.57 cm,树高最大家系(闽3)较最小家系(张村)高出40.1%,地径最大家系(三元11)较最小家系(张村)高出47.8%;江西分宜点水热资源更丰富[5],平均树高和地径生长量显著大于浙江淳安点,分别为1.90 m和3.40 cm,家系树高和地径变幅分别为1.44~2.35 m和2.17~4.20 cm,最大家系分别较最小家系高出63.2%和93.5%;福建明溪点分布于南方红豆杉的主产区,但因立地条件与浙江淳安类似,其平均树高和地径生长量也较接近,家系树高和地径变幅分别在1.46~2.29 m和2.26~3.42 cm,最大家系分别较最小家系高出56.8%和51.3%。因南方红豆杉自然整枝能力弱,分枝数少且细的家系选育更具意义。与生长性状一样,南方红豆杉当年抽梢长及一级分枝数、最大分枝角、最大分枝长和最大分枝粗等在家系间的遗传差异也均达到极显著的水平,变异系数为14.9%~43.9%,如浙江淳安、江西分宜和福建明溪3个地点的家系最大分枝粗分别变幅分别为0.70~1.06、0.63~1.29、0.47~0.61 cm。这为早期速生和分枝习性优良的南方红豆杉家系选择提供了很大潜力。

    试验点
    Test site
    性状
    Traits
    均值
    Mean
    变幅
    Range
    变异系数
    CV/%
    均方Mean square
    重复
    Repetition
    家系
    Family
    重复×家系
    Repetition×Family
    机误
    Error
    浙江淳安
    Chun’an of
    Zhejiang
    树高Tree height/m1.731.47~2.0623.89.630 7**0.758 1**0.238 5**0.119 0
    地径Ground diameter/cm2.572.07~3.0625.620.236 4**1.627 3**0.766 5**0.302 3
    冠幅Crown width/m1.320.93~1.6329.38.710 9**0.896 3**0.2364**0.092 8
    当年抽梢长Length of current shoot/m0.420.32~0.5743.91.885 1**0.103 0**0.056 2**0.024 0
    一级分枝数Primary branch number2317~3018.121.315 6**3.202 8**2.396 4**0.397 8
    最大分枝角Biggest branch angle/(º)5541~6823.41 448.453 2**889.984 6**255.180 2**123.926 6
    最大分枝长Biggest branch length/m1.020.80~1.2930.14.010 6**0.373 4**0.145 0**0.068 8
    最大分枝粗Biggest branch diameter/cm0.850.70~1.0630.21.566 7**0.216 9**0.114 6**0.050 8
    江西分宜
    Fenyi of
    Jiangxi
    树高Tree height/m1.901.44~2.3523.31.807 6**1.167 8**0.190 6**0.146 1
    地径Ground diameter/cm3.402.17~4.2027.13.898 0**6.155 9**0.760 8**0.618 0
    冠幅Crown width/m1.541.13~1.9429.34.605 1**1.073 3**0.261 2**0.134 6
    当年抽梢长Length of current shoot/m0.570.41~0.7332.00.372 4**0.124 1**0.041 5**0.026 2
    一级分枝数Primary branch number3724~4616.126.003 6**5.644 2**0.953 4**0.594 2
    最大分枝角Biggest branch angle/(º)6447~7617.1321.937 4**511.197 7**152.385 0**97.669 7
    最大分枝长Biggest branch length/m1.110.84~1.3629.01.327 3**0.435 1**0.092 70.084 3
    最大分枝粗Biggest branch diameter/cm1.030.63~1.2932.51.138 9**0.540 2**0.123 6**0.086 1
    福建明溪Mingxi of Fujian树高Tree height/m1.781.46~2.2920.61.486 2**0.100 3
    地径Ground diameter/cm2.752.26~3.4226.52.881 5**0.475 3
    冠幅Crown width/m1.171.03~1.3417.50.205 5**0.038 0
    一级分枝数Primary branch number1210~1314.90.648 0**0.257 6
    最大分枝角Biggest branch angle/(º)4536~6235.01 390.870 0**221.002 2
    最大分枝长Biggest branch length/m0.546.75~9.5126.90.056 4**0.020 7
    最大分枝粗Biggest branch diameter/cm0.800.47~0.6136.20.186 5**0.083 1
      注:浙江淳安点、江西分宜点的重复、家系、重复×家系和机误的自由度分别为4、54、205、1 635和4、38、141、907,福建明溪点的家系和机误的自由度分别为31和1 247。**为0.01极显著水平,下同。
      Notes: The degrees of freedom of repetition, family, repetition, repetition×family and error of Chun'an, Zhejiang and Fenyi, Jiangxi are 4, 54, 205, 1635 and 4, 38, 141, 907, respectively. The degrees of freedom of family and errors are 31 and 1 247. ** is a very significant level of 0.01, the same below.

    Table 1.  Analysis of variance of growth and branching traits of T. wallichiana var. mairei

  • 表2可看出:5年生南方红豆杉树高、地径、冠幅、最大分枝角、最大分枝长和最大分枝粗在3个地点的家系遗传力均较高($h_f^2$≥0.48),其变幅为0.48~0.88。南方红豆杉生长性状的家系遗传力估算值虽因各地点的测定材料及立地条件不同而有所变化,但总体估算值均较高,如3个地点树高的家系遗传力估算值分别为0.69、0.84和0.87,说明南方红豆杉家系幼林生长受中等至偏强的家系遗传控制。与家系遗传力比较,3个地点南方红豆杉生长和分枝性状的单株遗传力估算值虽然稍低,但仍受中等至偏强的遗传控制。

    性状
    Traits
    浙江淳安Chun’an of Zhejiang江西分宜Fenyi of Jiangxi福建明溪Mingxi of Fujian
    家系遗传力
    Family heritability
    单株遗传力
    Individual heritability
    家系遗传力
    Family heritability
    单株遗传力
    Individual heritability
    家系遗传力
    Family heritability
    单株遗传力
    Individual heritability
    树高Tree height0.690.390.840.790.870.58
    地径Ground diameter0.530.250.880.960.820.42
    冠幅Crown width0.740.580.780.680.800.36
    当年抽梢长Length of current shoot0.460.180.690.40
    一级分枝数Primary branch number0.280.150.840.860.560.13
    最大分枝角Biggest branch angle0.710.440.720.450.840.46
    最大分枝长Biggest branch length0.630.320.800.530.610.15
    最大分枝粗Biggest branch diameter0.480.190.780.580.530.11
      注:福建明溪点未测定当年抽梢长指标。
      Notes: It did not measure the Length of current shoot in the Mingxi of Fujian site.

    Table 2.  Estimation of heritability of growth and branching traits of 5-year-old T. wallichiana var. mairei

  • 表3表明:3个试验点南方红豆杉家系性状间遗传相关系数总体上大于表型相关系数。5年生家系树高、地径和冠幅间呈极显著的正遗传相关(rg=0.799~0.984),各生长性状与一级分枝数和最大分枝粗也呈极显著的正遗传相关(rg=0.495~0.994),这意味着南方红豆杉优树家系树高和地径生长量越大,其分枝越多越粗,冠幅也越大。在江西分宜和福建明溪点,最大分枝角与地径、一级分枝数、最大分枝长及最大分枝粗等性状的遗传相关程度较弱(rg=0.058~0.420),为选择分枝角较大、分枝数少且细的品系提供了可能。

    试验点
    Test site
    性状
    Traits
    树高
    Tree
    height
    地径
    Ground
    diameter
    冠幅
    Crown
    width
    当年抽梢长
    Length of
    current
    shoot
    一级分枝数
    Primary
    branch
    number
    最大分枝角
    Biggest
    branch
    angle
    最大分枝长
    Biggest
    branch
    length
    最大分枝粗
    Biggest
    branch
    diameter
    浙江淳安
    Chun’an of
    Zhejiang
    树高Tree height0.741**0.729**0.545**0.501**0.0470.730**0.702**
    地径Ground diameter0.799**0.704**0.737**0.507**0.1280.633**0.486**
    冠幅Crown width0.799**0.984**0.521**0.375**0.2210.766**0.596**
    当年抽梢长Length of current shoot0.930**0.673**0.798**0.340* 0.0630.520**0.447**
    一级分枝数Primary branch number0.591**0.653**0.737**0.961**−0.0430.362**0.355**
    最大分枝角Biggest branch angle0.824**0.825**0.851**0.846**0.707**0.087−0.019
    最大分枝长Biggest branch length0.764**0.997**0.978**0.686**0.792**0.713**0.765**
    最大分枝粗Biggest branch diameter0.495**0.837**0.752**0.496**0.484**0.585**0.850**
    江西分宜
    Fenyi of
    Jiangxi
    树高Tree height0.745**0.809**0.737**0.687**0.0940.687**0.482**
    地径Ground diameter0.917**0.758**0.531**0.595**0.0210.734**0.686**
    冠幅Crown width0.955**0.947**0.616**0.526**0.0990.802**0.604**
    当年抽梢长Length of current shoot0.977**0.927**0.983**0.504**0.0330.554**0.398*
    一级分枝数Primary branch number0.936**0.989**0.972**0.928**0.0400.474**0.370*
    最大分枝角Biggest branch angle0.424**0.311 0.485**0.434**0.381* −0.064−0.109
    最大分枝长Biggest branch length0.786**0.920**0.870**0.859**0.893**0.1220.690**
    最大分枝粗Biggest branch diameter0.781**0.955**0.856**0.817**0.947**0.1610.959**
    福建明溪
    Mingxi of
    Fujian
    树高Tree height0.656**0.496**0.419* 0.2530.508**0.419*
    地径Ground diameter0.948**0.678**0.542**0.2340.671**0.733**
    冠幅Crown width0.888**0.960**0.459**0.2560.686**0.517**
    一级分枝数Primary branch number0.901**0.939**0.950**0.2360.572**0.383*
    最大分枝角Biggest branch angle0.488**0.420* 0.512**0.374* 0.2370.151
    最大分枝长Biggest branch length0.843**0.914**0.942**0.823**0.0580.613**
    最大分枝粗Biggest branch diameter0.947**0.994**0.947**0.944**0.366*0.984**
      注:对角线以上为表型相关系数,对角线以下为遗传相关系数,*为0.05显著水平。
      Notes: Above the diagonal is the phenotypic correlation coefficient, below the diagonal is the genetic correlation coefficient, * is 0.05 significant level.

    Table 3.  Genetic and phenotypic correlation coefficients between growth and branching traits of T. wallichiana var. mairei

  • 图1表4可以看出:5年生南方红豆杉家系生长和分枝性状在两两地点间的相关性差异较大。在测定的南方红豆杉家系生长与分枝性状中,最大分枝角在3个地点组合间均呈极显著的正相关,表明其家系×地点互作效应不明显,各家系最大分枝角性状稳定,立地条件对其影响较小[14]。而树高和一级分枝数这两个性状在3个地点组合间的相关性都不显著,表明其家系×地点互作效应明显,随着种植生境的改变,家系树高和一级分枝数会发生较大的变化。此外,由表4还可看出:除树高和一级分枝数外,其余生长和分枝性状在浙江淳安和江西分宜两地点间的相关性极显著,其家系与立地互作效应不明显,显示除林冠下光照条件外,这两个地点的立地条件较相似。

    Figure 1.  The differences of tree height and biggest branch angle among all test sites,the traits are from the communal family

    性状Traits浙江淳安—江西分宜
    Chun’an of Zhejiang—
    Fenyi of Jiangxi
    浙江淳安—福建明溪
    Chun’an of Zhejiang—
    Mingxi of Fujian
    江西分宜—福建明溪
    Fenyi of Jiangxi—
    Mingxi of Fujian
    树高Tree height−0.008 60.463 50.569 3
    地径Ground diameter0.625 0**−0.153 70.106 1
    冠幅Crown width0.467 8**−0.138 5−0.211 0
    一级分枝数Primary branch number0.295 4−0.055 90.425 9
    最大分枝角Biggest branch angle0.554 7**0.693 2**0.822 4**
    最大分枝长Biggest branch length0.582 1**−0.556 7*−0.077 0
    最大分枝粗Biggest branch diameter0.418 3**−0.359 1−0.165 9
      注:浙江淳安和江西分宜的共有家系数为38个,浙江淳安和福建明溪的共有家系数为14个,江西分宜和福建明溪的共有家系数为12个。*表示显著性差异(0.01<P <0.05),**表示显著性差异(P <0.01)。
      Notes: Chun’an and Fenyi have a communal family number of 38, Chun'an and Mingxi have a communal family number of 14, and Fenyi and Mingxi have a communal family number of 12. * indicate significant difference (0.01<P <0.05). ** indicate significant difference (P <0.01).

    Table 4.  Correlation coefficient between growth and branching traits of T. wallichiana var. mairei

  • 作为珍贵用材培育目标,南方红豆杉速生优质家系要求速生、节少、分枝细和分枝平展等。树高以高于各地点家系均值为主要选择标准[12],家系最大分枝粗和一级分枝数以低于各地点家系均值为次要选择标准,从浙江淳安、江西分宜和福建明溪3个地点初选出4、5和1个优良家系(表5),其树高均值变幅为1.730~2.100 m。在3个试验点,以SY7、HSX2和SY10 3个家系的综合表现较好,其树高、最大分枝粗和一级分枝数在参试家系中的综合排秩较靠前。在福建明溪点,其入选家系SY10树高1.823 m,高于均值2.53%,最大分枝粗(0.794 cm)及一级分枝数(11枝)分别低于均值1.78%和9.6%,且SY10在江西分宜点也被纳入速生优质家系范围内,可见SY10家系在多个地点皆表现较好且稳定。

    试验点
    Test site
    家系
    Family
    树高
    Tree height/m
    >均值
    Mean/%
    排秩
    Rank
    最大分枝粗
    Biggest branch
    diameter/cm
    <均值
    Mean/%
    排秩
    Rank
    一级分枝数
    Primary branch
    number
    <均值
    Mean/%
    排秩
    Rank
    浙江淳安
    Chun’an of Zhejiang
    M131.806 4.5710.802 5.31321 2.324
    SY71.757 1.7220.70117.2421721.111
    M171.738 0.6330.70017.3611820.412
    SY91.730 0.1940.793 6.3841912.803
    江西分宜
    Fenyi of Jiangxi
    HSX22.10010.7610.90710.7742431.681
    JGS172.085 9.9820.87214.2723111.805
    SY91.948 2.7430.90111.4532626.693
    SY101.941 2.3940.83817.6412529.812
    SY121.907 0.5650.936 7.9252819.274
    福建明溪
    Mingxi of Fujian
    SY101.823 2.5310.794 1.78111 9.601
      注:浙江淳安、江西分宜和福建明溪3个地点的参试家系数分别为55、39和32个。
      Notes: The tester families of Chun’an, Fenyi and Mingxi are 55, 39 and 32 respectively.

    Table 5.  Tree height and branch values of preferred families

3.   讨论
  • 本文在前期南方红豆杉种源生长和分枝性状变异研究的基础上[12],报道了浙江淳安、江西分宜和福建明溪3个地点5年生南方红豆杉优树家系区域试验测定结果。方差分析结果表明,其生长和分枝性状存在显著的家系遗传变异,且树高和地径的家系变异系数均高达20.0%以上,速生优质家系的选择潜力巨大[15]。3个试验点中,江西分宜点南方红豆杉家系的总体生长表现要明显优于浙江淳安点和福建明溪点,究其原因,可能是由于江西分宜点上层湿地松和马尾松较稀疏,林冠下光照较足,显著促进其分枝生长、冠幅伸展和地径增大。5年生南方红豆杉各性状的家系遗传力普遍较高,受较强遗传控制,类似于欧建德等[16]研究结果;而这3个地点各性状单株遗传力估算值虽然低于其家系遗传力估算值,但仍受中等偏强的遗传控制。同时,江西分宜点的家系遗传力和单株遗传力大体上高于另外两个试验点,这与江西分宜点地处平地,重复间和重复内立地环境相对一致而显著降低了试验的环境效应有关[17]。试验还发现,江西分宜点地径的单株遗传力估算值还出现接近1.00的现象,可能与试验材料不完全符合Stonecypher等[18]的假设,即南方红豆杉自由授粉家系试验群体中包含部分自交或近交后代有关[19]。其实性状遗传力的估算值与所研究的材料、家系多少、年龄、试验地点环境以及试验设计等都有关,其估算值的大小也仅作为参考。

    生物不同性状间存在着不同程度的相关,分析性状间的关系可为速生优质家系的选择提供帮助,在选择一个性状的同时,可以间接地知道其它性状的结果。与表型相关比较,遗传相关是在剔除环境效应的影响外,通过方差和协方差统计得到的结果,更能准确地反映由于遗传效应引起的性状间的相关变化[20]。本文性状相关分析表明,江西分宜点和福建明溪点的5年生南方红豆杉优树家系最大分枝角与最大分枝粗及一级分枝数等其它分枝性状相关弱,在遗传上较为相互独立。辛娜娜等[7]在木荷家系研究中也发现其最大分枝角与最大分枝粗不相关或弱相关的规律,这有利于分枝细、分枝角也大即易自然整枝家系的选择。3个试验点家系树高、地径和冠幅三者之间均呈显著的正相关,这些生长性状与一级分枝数和最大分枝粗等也呈极显著的正相关,说明树高和地径生长突出的家系,分枝多且粗、枝叶茂密、冠幅宽[21]。在生产上,可选择速生的家系,再通过合理密植来培育高等级的南方红豆杉优质干材。树高和一级分枝数是2个对立地条件较敏感的性状,其家系×地点互作效应极显著,种植生境对其影响较大,须加强南方红豆杉优树家系的多点测定,估算不同家系的遗传稳定性,才能为不同区域和立地筛选出速生优质和遗传稳定的家系。

    在速生优质家系初选过程中,从3个试验点共初选出10个南方红豆杉优良家系,以SY7、HSX2和SY10 3个家系的综合表现较好,且SY10家系在江西分宜点也被纳入速生优质家系范围内,可见SY10家系在多个地点皆表现较好且稳定。在不同地点推广优选家系时,优先选用生长好、稳定性高的家系,可在多个地区造林;对于生长良好而稳定性不高的家系,建议在其生长适宜区域造林;而对于生长较差但稳定性高的家系,其生长适应性较强,对不良环境抵御能力高[22],可用作观景目标来考虑。限于林木生长周期较长,现阶段试验林仍处于幼林阶段,只能对其生长和分枝性状进行初步分析,为后续速生优质品种的多区域推广种植提供一定参考[23]

4.   结论
  • 5年生南方红豆杉生长和分枝性状在家系间的差异均达到极显著水平,具有丰富的遗传变异。3个试验点的南方红豆杉家系遗传力差异较大,且各性状间的相关关系差异也较大,其最大分枝粗、一级分枝数与最大分枝角相关较弱,这有利于易自然整枝家系的选择。种植生境的改变对南方红豆杉家系树高和一级分枝数的影响较大,但对其它生长和分枝性状的影响则较小。从3个试验点初选出的10个南方红豆杉优良家系中,SY10家系在多个地点皆表现较好且稳定。

    致谢:参加试验研究的还有中国林业科学研究院亚热带林业研究所金国庆、张蕊,浙江省龙泉市林业科学研究院冯建国、徐肇友、肖纪军、陈焕伟,中国林业科学研究院亚热带林业实验中心曾平生、姚甲宝,福建省明溪红豆杉产业研究所余能健等,谨此谢忱.

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return