• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 33 Issue 3
Jun.  2020
Article Contents
Turn off MathJax

Citation:

Effects of Nitrogen Fertilization on Early Growth of Betula alnoides Clones

  • Corresponding author: JIA Hong-yan, rlzxjhy@163.com
  • Received Date: 2019-10-08
    Accepted Date: 2020-02-18
  • Objective To examine the response of early growth of Betula alnoides Buch.-Ham. ex D. Don to nitrogen application and reveal the differences in the nitrogen requirement among clones. Method Four clones of Betula alnoides were used as materials in the nitrogen fertilization (urea) experiment with seven nitrogen treatments (0, 50, 150, 250, 400, 550 and 700 g urea per seedling), and the indicators such as survival rate, growth (tree height, DBH, height to crown base and crown width) and stem form (DBH/H ratio, axis persistence and stem straightness) were investigated, respectively. This study is to determine the differences in these traits among nitrogen fertilization treatments, clones and their interactions. Result The survival rate showed no obvious change, while the tree height, DBH and crown width displayed an “increase-stabilize-decrease” trend with the increase of nitrogen application amount for all the four clones in five years after planting. Moreover, the DBH/H ratio, axis persistence and stem straightness also tended to be better with the increasing nitrogen application. However the differences between nitrogen fertilizer treatments did not reach a significant level (P>0.05). There were significant differences among clones in the growth and stem form traits. The clone C3 showed the greatest performance, whose survival rate, tree height, DBH, height to crown base, crown width, axis persistence and stem straightness were 34%, 42%, 32%, 16%, 25%, 22% and 19% higher than those of clone C2, respectively. The interaction between nitrogen fertilization and clone was not significant. Conclusion Nitrogen fertilization would not affect the early afforestation growth and stem form quality of Betula alnoides. The clone C3 showed the best growth and wood quality.
  • 加载中
  • [1] 宇万太, 周 桦, 徐永刚, 等. 追施氮肥当年与翌年对桉树生长及各部位氮贮量的影响[J]. 生态学杂志, 2010, 29(9):1703-1708.

    [2] 任忠秀, 聂立水, 张 强, 等. 水氮耦合下毛白杨无性系材积生长规律及品种选择[J]. 中南林业科技大学学报, 2011, 31(8):187-193. doi: 10.3969/j.issn.1673-923X.2011.08.034

    [3] 陈 刚, 王 立, 吕 东, 等. 配方施肥对青海云杉无性系半同胞子代幼树生长的影响[J]. 西北林学院学报, 2015, 30(2):96-99. doi: 10.3969/j.issn.1001-7461.2015.02.16

    [4]

    Lachenbruch B, Droppelmann F, Balocchi C, et al. Stem form and compression wood formation in young Pinus radiata trees[J]. Canadian Journal of Forest Research, 2010, 40(1): 26-36. doi: 10.1139/X09-169
    [5]

    Valinger E. Effects of thinning and nitrogen fertilization on stem growth and stem form of Pinus sylvestris trees[J]. Scandinavian Journal of Forest Research, 1992, 7(1): 219-228.
    [6]

    Karlsson K. Stem form and taper changes after thinning and nitrogen fertilization in Picea abies and Pinus sylvestris stands[J]. Scandinavian Journal of Forest Research, 2000, 15(6): 621-632. doi: 10.1080/02827580050216879
    [7]

    Wiklund K, KonôPka B, Nilsson L. Stem form and growth in Picea abies (L.) Karst. in response to water and mineral nutrient availability[J]. Scandinavian Journal of Forest Research, 1995, 10(1-4): 326-332. doi: 10.1080/02827589509382899
    [8] 曾 杰, 郭文福, 赵志刚, 等. 我国西南桦研究的回顾与展望[J]. 林业科学研究, 2006, 19(3):379-384. doi: 10.3321/j.issn:1001-1498.2006.03.022

    [9] 陈 琳, 曾 杰, 徐大平, 等. 氮素营养对西南桦幼苗生长及叶片养分状况的影响[J]. 林业科学, 2010, 46(5):35-40. doi: 10.11707/j.1001-7488.20100506

    [10]

    Pinyopusarerk K, Kalinganire A, Williams E R, et al. Evaluation of International Provenance Trials of Casuarina equisetifolia[R]. ACIAR Technical Reports No 58e, 2004.
    [11] 武 松. SPSS实战与统计思维[M]. 北京: 清华大学出版社, 2019.

    [12] 陈 伟, 杨 斌, 史富强, 等. 配方施肥对西南桦幼林生长的影响[J]. 西部林业科学, 2015, 44(5):81-84.

    [13] 杨光习, 刀保辉, 杨从发, 等. 滇西地区西南桦幼林施肥试验初报[J]. 林业科技通讯, 2017(6):17-19.

    [14] 刘庆云, 姜远标, 付 强, 等. 不同施肥处理对西南桦幼林生长影响研究[J]. 林业调查规划, 2007, 32(2):40-44. doi: 10.3969/j.issn.1671-3168.2007.02.014

    [15] 杨尚东, 吴 俊, 谭宏伟, 等. 南方红壤区西南桦和马尾松人工林土壤微生物活性及细菌多样性比较[J]. 生态环境学报, 2014, 23(3):415-422. doi: 10.3969/j.issn.1674-5906.2014.03.008

    [16]

    Kroon J, Andersson B, Mullin T J. Genetic variation in the diameter–height relationship in Scots pine (Pinus sylvestris)[J]. Canadian Journal of Forest Research, 2008, 38(6): 1493-1503. doi: 10.1139/X07-233
    [17]

    Bradbury G J, Beadle C L, Potts B M. Genetic control in the survival, growth and form of Acacia melanoxylon[J]. New Forests, 2010, 39(2): 139-156. doi: 10.1007/s11056-009-9160-9
    [18]

    Cameron A D, Kennedy S G, Lee S J. The potential to improve growth rate and quality traits of stem straightness and branching habit when breeding Picea sitchensis (Bong.) Carr[J]. Annals of Forest Science, 2012, 69(3): 363-371. doi: 10.1007/s13595-011-0167-y
    [19]

    Kerr G, Stokes V, Peace A, et al. Effects of provenance on the survival, growth and stem form of European silver fir (Abies alba Mill.) in Britain[J]. European Journal of Forest Research, 2015, 134(2): 349-363. doi: 10.1007/s10342-014-0856-9
    [20]

    Ahnlund Ulvcrona K, Ulvcrona T, Nilsson U, et al. Stand density and fertilization effects on aboveground allocation patterns and stem form of Pinus sylvestris in young stands[J]. Scandinavian Journal of Forest Research, 2014, 29(3): 197-209.
    [21]

    Saha S, Kuehne C, Bauhus J. Intra-and interspecific competition differently influence growth and stem quality of young oaks (Quercus robur L. and Quercus petraea (Mattuschka) Liebl.)[J]. Annals of Forest Science, 2014, 71(3): 381-393. doi: 10.1007/s13595-013-0345-1
    [22]

    Höwler K, Annighöfer P, Ammer C, et al. Competition improves quality-related external stem characteristics of Fagus sylvatica[J]. Canadian Journal of Forest Research, 2017, 47(12): 1603-1613. doi: 10.1139/cjfr-2017-0262
    [23]

    Tun T N, Guo J, Fang S, et al. Planting spacing affects canopy structure, biomass production and stem roundness in poplar plantations[J]. Scandinavian Journal of Forest Research, 2018, 33(5): 464-474. doi: 10.1080/02827581.2018.1457711
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article views(3967) PDF downloads(70) Cited by()

Proportional views

Effects of Nitrogen Fertilization on Early Growth of Betula alnoides Clones

    Corresponding author: JIA Hong-yan, rlzxjhy@163.com
  • 1. Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China
  • 2. Guangxi Youyiguan Forest Ecosystem Research Station, Pingxiang 532600, Guangxi, China
  • 3. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China

Abstract:  Objective To examine the response of early growth of Betula alnoides Buch.-Ham. ex D. Don to nitrogen application and reveal the differences in the nitrogen requirement among clones. Method Four clones of Betula alnoides were used as materials in the nitrogen fertilization (urea) experiment with seven nitrogen treatments (0, 50, 150, 250, 400, 550 and 700 g urea per seedling), and the indicators such as survival rate, growth (tree height, DBH, height to crown base and crown width) and stem form (DBH/H ratio, axis persistence and stem straightness) were investigated, respectively. This study is to determine the differences in these traits among nitrogen fertilization treatments, clones and their interactions. Result The survival rate showed no obvious change, while the tree height, DBH and crown width displayed an “increase-stabilize-decrease” trend with the increase of nitrogen application amount for all the four clones in five years after planting. Moreover, the DBH/H ratio, axis persistence and stem straightness also tended to be better with the increasing nitrogen application. However the differences between nitrogen fertilizer treatments did not reach a significant level (P>0.05). There were significant differences among clones in the growth and stem form traits. The clone C3 showed the greatest performance, whose survival rate, tree height, DBH, height to crown base, crown width, axis persistence and stem straightness were 34%, 42%, 32%, 16%, 25%, 22% and 19% higher than those of clone C2, respectively. The interaction between nitrogen fertilization and clone was not significant. Conclusion Nitrogen fertilization would not affect the early afforestation growth and stem form quality of Betula alnoides. The clone C3 showed the best growth and wood quality.

  • 氮是植物生长必需的营养元素,国内外学者开展了不同立地条件下杉 (Picea crassifolia Kom.)、桉 (Eucalyptus robusta Smith) 和杨树 ( Populus simonii var. przewalskii (Maxim.) H. L. Yang) 等树种的施肥研究,探讨不同施肥量对其生长和养分吸收的影响,发现不同树种以及同一树种不同家系和无性系的养分需求存在差异,施用适量氮肥能显著促进林木的生长和养分含量[1-3]。广西4个月尾巨桉 (Eucalyptus urophylla×E. grandis) 无性系广林GL-9号,追施氮肥 (尿素50 g·株−1和复合肥200 g·株−1) 不仅显著提高桉树当年生物量,而且对桉树翌年的生长促进作用更显著[1]。河北2龄毛白杨 (Populus tomentosa Carr.) 造林后每年分2次施入尿素,4个毛白杨无性系 (BT17、B331、S86、1316) 造林后第4年的最佳氮肥(尿素)施用量为289~379 g·株−1[2]。干形决定用材林的价值,也是立木材积的估算因子[4]。径高比是表征树木干形的常用性状之一,施肥通过影响生物量在树干的分配,从而影响径高比。一些研究表明,施肥导致生物量向树干上部积累,呈现出圆柱形树干,径高比减少[5];而另一些研究显示,施肥导致生物量向树干下部积累,表现为锥形树干,径高比增加[6],或对生物量在树干中的分配无影响,径高比不变[7]

    西南桦 (Betula alnoides Buch.-Ham. ex D. Don)是南亚热带速生优良乡土阔叶树种,喜光、耐旱瘠,具有较高的经济和生态价值[8]。氮肥能够显著促进西南桦的生长和养分吸收[9],然而,西南桦造林早期生长和干形对氮肥的响应是否存在无性系差异以及氮肥与无性系是否存在交互作用,仍缺乏深入研究。因此,本研究选择4个生长优良的西南桦无性系开展氮素施肥试验,揭示氮肥、无性系及其交互作用对造林早期生长和干形的影响,从而确定4个无性系的最佳施氮量,为提高西南桦无性系造林早期生长和木材品质提供参考。

1.   试验地概况
  • 试验地位于广西凭祥市中国林业科学研究院热带林业实验中心青山实验场,该地属于亚热带季风气候,干湿季节明显,2000—2018年,年均气温22℃,年均降水量1 400 mm,4—10月降水占77%。试验地海拔750 m,东坡、中坡、坡度约30°,造林前茬是杉木采伐迹地。土壤是花岗岩风化形成的红壤,质地为砂质壤土。5 cm土壤容重0.76 g·cm−3,pH值4.38,有机质84.90 g·kg−1,全氮3.68 g·kg−1,全磷0.74 g·kg−1,全钾1.78 g·kg−1,水解氮397.35 mg·kg−1,有效磷1.75 mg·kg−1,速效钾125.98 mg·kg−1

2.   研究方法
  • 采用裂区试验设计,7个氮(尿素)梯度 (主区):0、50、150、250、400、550、700 g ·株−1,4个西南桦无性系 (副区):C1、C2、C3、C4,平均苗高20 cm,每个副小区8株,4次重复,合计896株。

    2013年12月造林,株行距为2 m×3 m,穴规格50 cm×50 cm×50 cm (长×宽×深),主区间采用1年生红椎实生苗作为隔离行,小区间设立1~2个隔离行。施肥方案见表1,N肥为尿素 (N≥46.4%),P肥为过磷酸钙 (P2O5≥ 18%),K肥为氯化钾 (K2O≥ 60%)。所有处理的N肥施用量不同,而P肥和K肥用量一致,P肥每株施500 g过磷酸钙,作为基肥1次性施入;K肥每株施330 g氯化钾,分5次施完。施肥方法采用穴施,即在植株两侧冠沿各挖1个约20 cm深的穴,施肥后立即覆土。

    g·株−1
    处理
    Treatment
    氮肥总量
    Total N fertilizer
    2013-12-112014-09-042015-04-282015-10-262016-07-122016-10-28
    N肥P肥K肥N肥K肥N肥K肥N肥K肥N肥K肥N肥
    N1 0 050030 060 060 090 090 0
    N2 505050030 060 060 090 090 0
    N3150505003010060 060 090 090 0
    N425050500301006010060 090 090 0
    N54005050030100601006015090 090 0
    N6550505003010060100601509015090 0
    N7700505003010060100601509015090150

    Table 1.  The fertilization schedule

  • 于2014、2016、2018年12月,即造林后第1、3、5年,分别调查西南桦无性系的保存率、树高、胸径、枝下高、冠幅和干形性状 (主干分叉和通直度)。径高比以胸径 (cm) 与树高 (m) 之比来表示,采用Pinyopusarerk等[10]方法估算主干分叉和通直度 (表2)。

    项目
    Item
    等级Grade
    123456
    主干分叉Axis persistence基部分叉基部至1/4高分叉1/4至2/4高分叉2/4至3/4高分叉3/4高至顶梢分叉不分叉
    通直度Stem straightness树干不垂直且>2弯树干基本垂直且>2弯树干不垂直且1~2弯树干垂直且1~2弯树干较垂直且不弯曲树干垂直且不弯曲

    Table 2.  Classification criteria of stem form traits

  • 由于2016年10月施肥全部结束,因此,本文仅对2016和2018年调查数据进行统计分析。应用 SPSS16.0 软件General Linear Model的Univariate对西南桦无性系的生长和干形性状进行裂区试验设计方差分析,检验氮肥和无性系的效应及其交互作用,若差异显著则在P<0.05水平上进行 Duncan 多重比较[11]。统计分析前,保存率经平方根反正弦转换,主干分叉和通直度经平方根转换。

3.   结果与分析
  • 表3可知:造林后第3、5年,氮肥、氮肥和无性系交互作用对保存率的影响均不显著 (P>0.05),而各无性系之间保存率差异显著 (P<0.05)。造林后第5年,无性系C2的保存率最小,比其它3个无性系低21%~33% (表4)。

    年份
    Year
    变异来源
    Variation
    source
    保存率
    Survival
    rate
    树高
    H
    胸径
    DBH
    枝下高
    Height to
    crown base
    冠幅
    Crown
    width
    径高比
    DBH/H
    ratio
    主干分叉
    Axis
    persistence
    通直度
    Stem
    straightness
    2016氮Nitrogen0.9550.2620.1220.6600.1040.095NANA
    无性系CloneP<0.05P<0.001P<0.001P<0.001P<0.001P<0.001NANA
    氮×无性系Nitrogen×Clone0.2730.0550.154P<0.010.6870.198NANA
    2018氮Nitrogen0.4190.3090.0860.7020.4060.3810.8050.698
    无性系CloneP<0.001P<0.001P<0.001P<0.001P<0.001P<0.001P<0.001P<0.001
    氮×无性系Nitrogen×Clone0.3610.1560.4390.8260.3380.0560.4960.613
    注:NA:无数据。下同。
    Note:NA:No data.The same followed.

    Table 3.  ANOVA of early growth and stem form traits of Betula alnoides

    年份
    Year
    处理
    Treatment
    保存率
    Survival rate/%
    树高
    H/m
    胸径
    DBH/cm
    枝下高
    Height to
    crown base/m
    冠幅
    Crown
    width/m
    径高比
    DBH/H
    ratio
    主干分叉
    Axis
    persistence
    通直度
    Stem
    straightness
    2016N164±4a4.0±0.1a3.7±0.1a1.2±0.0a1.8±0.1a0.91±0.02aNANA
    N259±4a4.1±0.1a3.9±0.1a1.2±0.0a1.9±0.1a0.94±0.02a NANA
    N363±4a4.3±0.1a4.2±0.1a1.3±0.0a2.0±0.1a0.99±0.02a NANA
    N455±4a4.5±0.1a4.4±0.1a1.3±0.1a2.1±0.1a0.97±0.02a NANA
    N558±4a4.2±0.1a4.3±0.1a1.3±0.1a2.1±0.1a1.01±0.02a NANA
    N662±4a4.4±0.1a4.4±0.1a1.4±0.1a2.2±0.1a1.01±0.02a NANA
    N759±4a4.2±0.1a3.9±0.1a1.3±0.0a2.0±0.1a0.93±0.02a NANA
    C161±3ab4.5±0.1a4.1±0.1b1.4±0.0a2.1±0.1ab0.92±0.01bNANA
    C267±3a3.9±0.1c4.0±0.1b1.1±0.0b2.0±0.1b1.02±0.01aNANA
    C358±3ab4.3±0.1ab4.5±0.1a1.4±0.0a2.2±0.1a1.01±0.01aNANA
    C453±3b4.2±0.1b4.0±0.1b1.2±0.0b1.9±0.1c0.91±0.01bNANA
    2018N159±4a6.2±0.2a5.6±0.2a2.6±0.1a2.5±0.1a0.92±0.02a4.1±0.1a3.3±0.1a
    N258±4a6.3±0.2a6.0±0.2a2.8±0.1a2.5±0.1a0.97±0.02a4.3±0.1a3.7±0.1a
    N357±4a6.9±0.2a6.4±0.2a2.7±0.1a2.7±0.1a0.95±0.02a4.3±0.1a3.9±0.1a
    N443±4a7.0±0.2a6.8±0.2a2.9±0.1a2.8±0.1a0.99±0.02a4.1±0.1a3.9±0.1a
    N548±4a7.0±0.2a6.8±0.2a2.8±0.1a2.7±0.1a1.00±0.02a4.1±0.1a4.2±0.2a
    N652±4a7.0±0.2a6.7±0.2a3.0±0.1a2.5±0.1a0.99±0.02a4.1±0.1a4.0±0.2a
    N750±4a6.4±0.2a5.9±0.2a3.0±0.1a2.3±0.1a0.95±0.02a4.2±0.1a3.8±0.1a
    C161±3a7.0±0.1b6.4±0.1b3.0±0.1a2.8±0.1b0.94±0.02bc4.3±0.1a3.5±0.1c
    C241±3b5.5±0.2c5.7±0.2c2.5±0.1 b2.4±0.1c1.05±0.02a3.7±0.1b3.7±0.1b
    C355±3a7.8±0.2a7.5±0.1a2.9±0.1a3.0±0.1a0.98±0.02b4.5±0.1a4.4±0.1a
    C452±3a6.5±0.2b5.9±0.1c2.9±0.1 a2.4±0.1c0.91±0.02c4.3±0.1a3.8±0.1b
      注:表中数值为平均值±标准误,同列不同小写字母表示差异显著 (P< 0.05)。
      Notes: Values are displayed as mean ±standard error. Treatments without the same small letters in the same column are significantly different between treatments according to Duncan’s multiple range tests at the 5% level.

    Table 4.  Multiple comparison of early growth and stem form traits of Betula alnoides

  • 表3可知:造林后第3年和第5年,无性系对西南桦的树高、胸径、枝下高和冠幅的影响极显著 (P<0.001),氮肥和无性系交互作用仅显著影响造林第3年的枝下高 (P<0.01),而氮肥对西南桦造林后生长的影响不显著 (P>0.05)。

    表4表明:树高、胸径和冠幅随着施氮量的增加呈现出“增加—稳定—减少”的变化趋势,当施氮肥(尿素)量为250~550 g尿素·株−1时,西南桦的生长表现最好。造林后第5年,无性系C3的生长表现最优,其树高、胸径、枝下高和冠幅分别达7.8 m、7.5 cm、2.9 m和3.0 m,其次是无性系C1和C4,生长最差的为无性系C2。与无性系C2相比,无性系C3的树高、胸径、枝下高和冠幅分别高42%、32%、16%和25%,且差异显著。

  • 表3可知:造林后第3、5年,无性系之间径高比及造林后第5年的主干分叉和通直度差异极显著 (P<0.001),而氮肥、氮肥和无性系的交互作用对径高比、主干分叉和通直度的影响均不显著 (P>0.05)。表4表明:与其他无性系相比,无性系C3的干形表现最佳,其主干最通直,分叉部位最高,而径高比处于中等水平,其次是无性系C1和C4,最差的是无性系C2。

4.   讨论
  • 本研究中,随着施氮量增加,西南桦的树高、胸径和冠幅呈现出“增加—稳定—减少”的变化趋势,施氮量(尿素)为250 ~ 550 g·株−1时 (N4、N5、N6处理),各项生长性状达到最大值,但不同氮处理间生长差异并不显著,与以往的研究结果不同,如云南省德宏州瑞丽市3年龄西南桦配方施肥研究结果表明,氮、磷、钾和复合肥4种肥料组合以基肥方式施入对西南桦的高和径向生长具有明显的促进作用,高和径向生长的最大提高幅度分别达55%和101%,其中氮肥的生长促进作用大于其它3种肥料,最佳施氮(尿素)量为100 g·株−1[12]。云南省德宏州芒市2年生西南桦幼林的施肥效果及其坡位效应研究结果显示,磷肥作为基肥一次性施入,氮和钾肥分3次施入,随着施肥量的增加,西南桦的胸径、树高和冠幅生长量显著增大,最佳施氮(尿素)量为325 g·株−1,各处理的施肥效果因坡位而异[13]。上述不同研究结果表明,即使同一树种,肥料种类、施肥方法、立地条件和林龄不同,其最佳施氮量和施肥效果也可能不相同,因此,适宜施氮范围的确定应该充分考虑肥料种类、施肥方法、立地条件和林龄等因素。西南桦是高养分需求树种,但氮肥对西南桦造林早期生长的促进作用并不显著,原因可能有两个:一是西南桦对氮磷钾的需求量可能随着植株生长的增加而同步增加,本研究仅提高了不同施肥处理的氮肥施用量,未改变磷肥和钾肥的施用量,虽然磷和钾肥的施用量在各处理上都较高,但氮磷钾配比发生了变化,从而影响了氮肥施用效果,刘庆云等[14]亦发现,氮磷钾配施对西南桦幼林生长的影响有时甚至大于单素施肥;二是西南桦属于深根性树种,根系发达,对土壤的适应性广。以往研究显示,花岗岩发育的低山黄壤区适合西南桦生长,其土壤全氮含量为0.57~1.88 g·kg−1[15],而本研究的土壤全氮含量为3.68 g·kg−1,其土壤氮能够满足西南桦的生长需要,因此,今后应该根据土壤的养分状况合理设置氮磷钾配比以提高西南桦造林施肥效果。干形是衡量木材质量和抗性的重要指标之一,干形主要受遗传因素控制[16-19],并且受施肥和间伐等抚育措施的影响[620]。与生长的研究结果类似,氮肥对西南桦的径高比、主干分叉和通直度影响亦不显著,可能因为在造林初期林分郁闭过程中,出现了自然整枝现象,使生物量在树干的分配相对均匀,因此,氮肥未改变西南桦的干形,但随着树冠不断扩大是否会影响径高比和枝条发育有待进一步观测[21-23]

    本研究结果显示,造林后第5年,西南桦无性系的各生长和干形性状均差异显著,以无性系C3的表现最优,其保存率、树高、胸径、枝下高、冠幅、主干分叉和通直度较最差的无性系C2分别高34%、42%、32%、16%、25%、22% 和19%,说明选择合适的无性系造林,能够显著提升西南桦早期生长速度和干形质量。另外,笔者发现,氮肥和无性系的交互作用并不显著,说明西南桦无性系对氮素施肥的响应不存在明显差异,这与以往的一些研究结果不同,如毛白杨和青海云杉 (Picea crassifolia Kom.) 对施肥量的响应因基因型而异[2-3],可能与本研究的立地条件和氮磷钾施肥配比有关。因此,在今后开展无性系养分需求研究时,宜根据土壤养分状况合理设置施肥配比。

5.   结论
  • 随着施氮量的增加,西南桦无性系的生长和干形性状先逐渐增加,达到最大值后又逐渐减少,但不同氮肥处理间差异不显著,表明单一提高氮肥用量对西南桦造林早期生长和干形的促进作用并不明显。无性系显著影响西南桦的存活率、树高、胸径、枝下高、冠幅、径高比、主干分叉和通直度,综合各生长和干形性状,宜采用无性系C3造林,其西南桦生长与干形表现最好。氮肥和无性系不存在交互作用。

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return