• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 34 Issue 1
Jan.  2021
Article Contents
Turn off MathJax

Citation:

Physiological and Structural Responses of Betula nigra to Periodic Flooding in Three Gorges Reservoir Fluctuating Zone

  • Corresponding author: GAN Li-ping, 344584620@qq.com
  • Received Date: 2020-06-03
    Accepted Date: 2020-08-29
  • Objective To study the physiological responses of Betula nigra in fluctuating zone to flooding in order to support the phytoremediation. Method Taking Xikou Township, which is located at the fluctuating zone of Wanzhou Section of the Three Gorges Reservoir Area, as the experimental site, the growth index, physiological index and anatomical structure of B. nigra, which experienced one to five times of flooding, were compared to study the response of B. nigra to periodic flooding. Result The results showed that the height of B. nigra seedlings tended toward increase after 5 times of flooding, but there was no difference in DBH. The leaf water content and the CK were no longer different after two times of flooding; the leaf chlorophyll content a, total chlorophyll and chlorophyll a/b were no longer changed after three times of flooding. After one to two times of flooding, the content of soluble protein in B. nigra leaves was higher than that in CK. After three times of flooding, there was no difference between birch leaves and the CK. After four times of flooding, there was no difference between B. nigra roots and the CK. The MDA content in leaves and roots increased significantly after one and two times of flooding compared with that in CK, and there was no difference after three times of flooding. The SOD content in leaves increased after the first time of flooding compared with the CK, and there was no difference after two times of flooding. There was no difference of SOD content in roots after three times of flooding. The anatomical structure showed that the upper epidermis of the leaves was thickened after flooding, and the palisade tissue was developed and arranged closely. After four to five times of flooding, the cell gap of the spongy tissue of the leaves increased, forming large stomatal fossa, and some dissolved tissue with large gap appeared between the xylem and phloem of the vascular bundle of the leaves. Conclusion The B. nigra planted at the elevation of 172 m in the fluctuating zone of Wanzhou District has produced a more obvious compensation effect under the condition of intermittent semi-flooding. It has already had a good adaptability after three times of flooding.
  • 加载中
  • [1] 朱妮妮, 秦爱丽, 郭泉水, 等. 三峡水库巫山—秭归段典型消落带植被空间分异研究[J]. 林业科学研究, 2015, 28(1):109-115.

    [2]

    Yang S L, Zhang J, Dai S B, et al. Effect of deposition and erosion within the main river channel and large lakes on sediment delivery to the estuary of the Yangtze River[J]. Journal of Geophysical Research Earth Surface., 2007, 112(F2): 111-119.
    [3]

    Yang F, Liu WW, Wang J, et al. Riparian vegetation’s responses to the new hydrological regimes from the Three Gorges Project: Clues to revegetation in reservoir waterlevel-fluctuation zone[J]. Acta EcologicaSinica, 2012, 32: 89-98.
    [4] 罗 祺, 张纪林, 郝日明, 等. 水淹胁迫下10个树种某些生理指标的变化及其耐水淹能力的比较[J]. 植物资源与环境学报, 2007, 16(1):69-73. doi: 10.3969/j.issn.1674-7895.2007.01.016

    [5]

    Yu X, Luo N, Yan J, et al. Differential growth response and carbohydrate metabolism of global collection of perennial ryegrass accessions to submergence and recovery following de-submergence[J]. Journal of Plant Physiology, 2012, 169(11): . 1040-1049. doi: 10.1016/j.jplph.2012.03.001
    [6] 高 岚, 刘 芸, 熊兴政, 等. 引种植物水桦与乡土植物桑树对三峡库区消落带水淹的响应[J]. 林业科学, 2018, 54(9):147-156. doi: 10.11707/j.1001-7488.20180917

    [7] 袁贵琼, 刘 芸, 邬静淳, 等. 模拟三峡库区消落带水淹对3类土壤中桑树和水桦生长的影响[J]. 西北农林科技大学学报: 自然科学版, 2018, 46(6):65-74.

    [8]

    Grace S C, Logan B A. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species[J]. Plant Physiol, 1996, 112(4): 1631-1640. doi: 10.1104/pp.112.4.1631
    [9] 李小方, 张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2016.

    [10] 李和平. 植物显微技术[M]. 北京: 科学出版社, 2009.

    [11] 刘玉芳, 陈双林, 郭子武, 等. 淹水对河竹鞭根系统生物量分配及异速生长模式的影响[J]. 林业科学研究, 2018, 28(4):29-36.

    [12]

    Burkett V R, Draugelis-Dale R O, Williams H M, et al. Effects of flooding regime and seedling treatment on early survival and growth of nuttall oak[J]. Restoration Ecology, 2005, 13(3): 471-479. doi: 10.1111/j.1526-100X.2005.00059.x
    [13] 黄秋婵, 韦友欢. 阳生植物和阴生植物叶绿素含量的比较分析[J]. 湖北农业科学, 2009, 48(8):1923-1924, 1929. doi: 10.3969/j.issn.0439-8114.2009.08.039

    [14]

    Kumutha D, EzhilmathiK, Sairam R K, et al. Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes[J]. Biologia Plantarum, 2009, 53(1): 75-84. doi: 10.1007/s10535-009-0011-5
    [15] 陈丽英, 杜克兵, 姜法祥, 等. 水淹胁迫对2种杨树初生根细胞结构的影响[J]. 林业科学, 2015, 51(3):163-169.

    [16] 胡潇予, 于海燕, 崔艺凡, 等. 不同种源文冠果叶片气孔分布特征对水分胁迫的响应[J]. 林业科学研究, 2019, 32(1):169-174.

    [17] 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 22(增刊):118-127.

    [18]

    Colmer T D, Cox M C H, Voesenek L A C J. Root aeration in rice(Oryza sativa): evaluation of oxygen, carbon dioxide and ethyleneas possible regulators of root acclimatizations[J]. New Phytologist, 2006, 170(4): 767-778. doi: 10.1111/j.1469-8137.2006.01725.x
    [19]

    Kawase M. Anatomical and morphological adaption of plants towaterlogging[J]. Hort. Science, 1981, 16: 8-12.
    [20]

    Phukan U J, Mishra S, Shukla R K. Waterlogging and submergence stress: affects and acclimation[J]. Critical Reviews in Biotechnology, 2016, 36(5): 956-966. doi: 10.3109/07388551.2015.1064856
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6) / Tables(1)

Article views(4347) PDF downloads(30) Cited by()

Proportional views

Physiological and Structural Responses of Betula nigra to Periodic Flooding in Three Gorges Reservoir Fluctuating Zone

    Corresponding author: GAN Li-ping, 344584620@qq.com
  • 1. College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, Chongqing, China
  • 2. Chongqing Renjia Biotechnology Co., Ltd, Xiushan 409999, Chongqing, China
  • 3. Chongqing Forestry Research Institute, Chongqing 404000, China

Abstract:  Objective To study the physiological responses of Betula nigra in fluctuating zone to flooding in order to support the phytoremediation. Method Taking Xikou Township, which is located at the fluctuating zone of Wanzhou Section of the Three Gorges Reservoir Area, as the experimental site, the growth index, physiological index and anatomical structure of B. nigra, which experienced one to five times of flooding, were compared to study the response of B. nigra to periodic flooding. Result The results showed that the height of B. nigra seedlings tended toward increase after 5 times of flooding, but there was no difference in DBH. The leaf water content and the CK were no longer different after two times of flooding; the leaf chlorophyll content a, total chlorophyll and chlorophyll a/b were no longer changed after three times of flooding. After one to two times of flooding, the content of soluble protein in B. nigra leaves was higher than that in CK. After three times of flooding, there was no difference between birch leaves and the CK. After four times of flooding, there was no difference between B. nigra roots and the CK. The MDA content in leaves and roots increased significantly after one and two times of flooding compared with that in CK, and there was no difference after three times of flooding. The SOD content in leaves increased after the first time of flooding compared with the CK, and there was no difference after two times of flooding. There was no difference of SOD content in roots after three times of flooding. The anatomical structure showed that the upper epidermis of the leaves was thickened after flooding, and the palisade tissue was developed and arranged closely. After four to five times of flooding, the cell gap of the spongy tissue of the leaves increased, forming large stomatal fossa, and some dissolved tissue with large gap appeared between the xylem and phloem of the vascular bundle of the leaves. Conclusion The B. nigra planted at the elevation of 172 m in the fluctuating zone of Wanzhou District has produced a more obvious compensation effect under the condition of intermittent semi-flooding. It has already had a good adaptability after three times of flooding.

  • 2019年,三峡水库已连续10 a完成175 m蓄水目标。年复一年的季节性水位涨落形成30 m的消落带区域,是水生生态系统和陆生生态系统交替存在的特殊地带 (图1)[1]。冬季的完全水淹和夏季的伏旱使消落区植被物种多样性呈下降趋势,水土流失较突出[2]。重新造林和植被重建是恢复这些新形成的河岸带的首要任务[3]。因此,筛选出能长期遭受水淹并能正常生长的植物十分重要。目前,与草本植物相比,在长期淹水中能够存活的木本植物相对较少,尤其是完全淹没的品种[4-5]。水桦(Betula nigra L.),属桦木科(Betulaceae)落叶乔木,树高18~25 m,具有抗病虫、抗寒、耐水淹、抗污染等特性[6]。三峡库区良木水桦(良种编号:渝R-ETS-BN-007-013)为重庆市林业科学研究院引自美国的树种[7],研究表明,消落带中高程170 m处生长的水桦光合作用略强于高程175 m处,说明水桦可通过增强生长期的光合能力一定程度上补偿冬季蓄水对生长的负面影响,是三峡库区消落带植被恢复重建的适生树种[7]。当前,万州区消落带示范区水桦定植后已有5 a,以时间为轴的形态与生理生化指标变化等未见报道。本研究以三峡库区消落带溪口乡栽培的水桦为研究对象,调查水桦在经历周期性水淹后的生理指标的变化及解剖结构的恢复动态,为水桦的扩大栽培与品种选育提供理论依据。

    Figure 1.  Sampling time and place of Betula nigra

1.   采样地概况
  • 本试验取样点位于重庆市万州区溪口乡玉竹村(30°35′41.7″ N,108°19′39.4″ E)消落带内。万州区属亚热带季风湿润带,该区年平均温度17.7℃,最高温度41℃,最低温度−3.7℃。2014年,确定三峡库区万州溪口乡玉竹村1社善溪沟长江消落带建立水桦植被恢复示范片,栽植面积13 340 m2,以3年生种子繁殖苗(株高1.5 m左右)为定植苗。栽植在高度为170~175 m的消落带区域,原地块为农田区域。该区域为典型长江三峡库区干流消落区,植被恢复针对性强,立地条件较好,适宜湿地乔木生长,景观及示范性较强[7]

2.   研究方法
  • 2014年5月至2018年5月,由重庆任甲生物科技有限公司牵头,每年在万州溪口乡玉竹村消落带示范基地172 m高程区栽植株高为1.5 ± 0.2 m的3 年生种子繁殖的水桦苗150余株,共计近800株。本高程万州段每年从10月15日左右开始蓄水,次年1月15日左右退水,分别经历过1~5次周期性水淹。本次试验于2019年4月15日取样,即为水淹90 ± 5 d、出水90 ± 5 d的处理条件,其中,定植后2 a以内的水桦植株株高没有超过3 m,在175 m的水位线下,为全淹没。定植后3 a的水桦植株株高超过了3 m,175 m的水位线没有完全淹没,为半淹没,即植株高于3 m的上部枝条一直在水面以上。分别在该高程水桦栽植区隔5株取1株,每轮淹水取5株,共取25株,测量生长指标,并分别采集最上部枝条顶端第1~3片叶和当年生须根备用,同时以高程175 m以上没有水淹的露地同龄水桦栽植后1~5 a的植株的相同部位作为对照。

  • 采用直尺和卷尺测定水桦根茎部直径、株高,须根数为人工数第1层主根上的数目,每个树龄测量5株,取平均值。

  • 叶绿素含量参照Grace等[8]的方法测定;可溶性蛋白含量采用考马斯亮蓝染色法测定;丙二醛(MDA)含量采用硫代巴比妥酸比色法[9]测定;超氧化物歧化酶(SOD)活性使用南京建成生物工程研究中心的黄嘌呤氧化酶法试剂盒测定。

  • 参照李和平[10]的方法,制作水桦叶片横切面石蜡切片。冲洗干净样品后,滤纸吸干表面水分,以福尔马林-乙酸-乙醇固定液固定。采用LERCA(GERMANY)全自动切片机制作高精度切片,番红染色,使用生物光学显微镜观察石蜡切片中根系解剖结构。本部分委托河南风桦教学仪器有限公司完成。后在重庆三峡学院OlympusBX51光学显微镜上拍照。

  • 用Microsoft Excel2010及SPSS19.0软件对实验数据进行分析处理和作图,采用单因素方差分析(one-way ANOVA),并用Tukey多重比较检验各指标的差异显著性,显著水平为0.05和0.01。

3.   结果与分析
  • 与对照组相比,在消落区栽植并经历水淹,对水桦株高有较大影响,水淹1次后株高有近70 cm的停滞生长,水淹2次后株高与对照仍有差异,水淹3次后,株高与对照没有差异,水淹5次后,株高比对照增加,并且差异显著。从胸径看,水淹1次后与对照差异不显著,水淹2次和3次后的水桦,胸径与对照均差异显著,水淹4次以后与对照差异不显著。总体可见,水桦在消落区定植后第1年株高受抑制,第2年和第3年胸径受抑制,经过3 a的适应后,植株顶端不再被完全淹没,生长基本不再受影响,并且在第5年开始有了较强的生长补偿效应 (表1图2)。

    处理
    Treatment
    树高
    Tree height/m
    胸径
    DBH/cm
    水淹-1 1.52 ± 0.16 g 7.52 ± 1.68 d
    CK-1 2.27 ± 0.23 f 8.16 ± 2.14 d
    水淹-2 2.35 ± 0.25 f 9.36 ± 2.22 d
    CK-2 2.79 ± 0.32 e 12.81 ± 2.08 c
    水淹-3 3.56 ± 0.47 d 12.35 ± 3.18 c
    CK-3 3.88 ± 0.28 d 14.29 ± 5.16 b
    水淹-4 6.59 ± 0.61 c 16.46 ± 4.28 b
    CK-4 7.04 ± 0.88 fc 18.61 ± 6.32 b
    水淹-5 11.26 ± 1.27 a 20.52 ± 3.19 a
    CK-5 9.90 ± 1.38 b 19.56 ± 7.12 a
      注:同列不同字母表示不同处理间差异显著(p < 0.05)。下同。
      Note: Between different treatment groups (P < 0.05). The same below.

    Table 1.  Changes of morphological indexes of Betula nigra after periodic flooding in the depression zone

    Figure 2.  Growth state of B. nigra after periodic flooding in the fallow zone

  • 图3A表明:随树龄增加水桦叶片中的含水量逐步降低,水淹1次后的植株叶片含水量相比对照有显著升高,水淹2次后与对照叶片含水量显著不差异。水桦叶片叶绿素含量变化主要在第1次水淹后,叶绿素a含量(图3B)、总叶绿素(图3C)和叶绿素a/b(图3D)与对照相比均呈显著下降趋势。水淹2次后植株的这4个指标与对照相比再无差异;水淹3次后,水淹和对照植株叶片的叶绿素a含量、总叶绿素含量和叶绿素a/b均显著高于1~2次水淹。说明随着水淹次数的增加,水桦的适应性逐步建立,退水后刺激植物加速生长,叶绿素含量相应的增多,进而增加了水桦叶片的光合强度,生长能力也逐步恢复。

    Figure 3.  Changes of water content and chlorophyll content of Betula nigra after periodic flooding in the ebb zone

  • 图4A表明:水桦叶片中可溶性蛋白含量比根中高,水淹1次和2次后的水桦叶片中可溶性蛋白含量都比对照高,水淹3次后与对照组不再有差异;根系中的可溶性蛋白质含量前3次水淹后均高于对照,水淹4次后,与对照差异不显著。图4B表明:与对照组相比,水淹1次和2次后叶片和根系中的丙二醛含量显著增加,水淹3次后差异不显著。图4C表明:第1次水淹后叶片中的SOD活性显著高于对照,2次水淹后与对照差异不显著;根系中的SOD活性在2次水淹后显著高于对照,水淹3次后,与对照差异不显著。水桦在水分胁迫时积累较多的渗透调节物质和抗氧化酶等来积极应对水分逆境,经过周期性水淹后的积累量和代谢速度都有差异,经历1~2次水淹后,在恢复过程中这类物质消除比较慢,在出水后的叶片和根系中都能检测到,相对来说,根系的胁迫敏感和持久性比叶片更明显,3次水淹后水桦的几项生理指标基本上与对照没有显著差异,说明耐水淹的适应机制基本建立,这估计与第3次以后的水淹只是半淹的条件有关。

    Figure 4.  Changes of physiological index of Betula nigra after periodic flooding in the ebb zone

  • 水桦为典型的两面叶植物,叶片有明显的上表面和下表面之分,有表皮细胞,栅栏组织2层,海绵组织多层,其中,分布有维管束(图5)。周期性水淹次数对水桦叶形态和组织结构均有显著的影响,水分胁迫改变了水桦叶片的组织结构及比例,水淹1~2次后,叶片上表皮(EP)均比未水淹厚,栅栏组织(PT)发达,排列紧密;3次水淹后的植株叶片与对照没有明显的结构差异,特别是经历4次水淹后,植物叶片气孔窝密度增加,叶片海绵细胞间隙增大,与对照没有差异。

    Figure 5.  Changes of cross section structure of Betula nigra leaves in the ebb zone after periodic flooding

    图6表明:水淹2次后,维管束中间导管(CA)细胞变大,细胞松散,水淹4次后,木质部与韧皮部之间出现了一些较大空隙的溶生型组织,能够更好的适应呼吸和代谢。

    Figure 6.  The structure of vascular bundle in the cross section of Betula nigra leaves after periodic flooding

4.   讨论
  • 3年生水桦苗在消落区栽植后,逐步对水淹环境产生了适应性,并且由于退水后土壤和树体还保存有大量水分,进入伏旱能极快速地加快生长,产生了较明显的补偿效应。同样的补偿效应在长期淹水的河竹中也报道过,通过鞭根系统的生物量合理分配和异速生长调节河竹能逐步适应淹水环境[11]。周期性淹水对植物是一种生物钟的节律调节生长,Burkett等[12]研究表明,密西西比州亚祖河消落带间歇性水淹地段的纳栎幼苗存活率明显高于长期性水淹地段。

  • 阴生植物叶绿素a/b值普遍较小[13]。第1次水淹后水桦叶片的总叶绿素含量和叶绿素a/b显著下降,说明水淹环境形成了类似一种阴生植物生存的条件,在退水后新发叶片色素代谢的影响还没消退;水淹3次后叶绿素合成已经不再受之前水淹胁迫的影响,与第3次水淹为半淹状态和植物的适应性形成有关系。植物在逆境中通过改变光合产物的分配比例等方式来维持糖分供应和调节碳代谢,从而避免有毒物质的形成,还可通过改变体内SOD、CAT、POD水平等以保持尽量低的能量储备,降低代谢速率[14]。通过水桦水淹胁迫后几项生理指标调查发现,叶片中可溶性蛋白含量、SOD在水淹2次后就与对照没有差别,而同期的根系是在水淹3次后与对照没有差别。这亦佐证了根系是水淹胁迫下植株受伤最早、最敏感、持续最久的部位[15]

  • 叶表皮角质膜厚度、气孔导度调节能力等是影响水分蒸腾和输导、气体交换的主要结构指标,能够反映植物对环境水分和湿度条件的适应状况[16]。水分胁迫改变了水桦叶片的组织结构及比例,水淹前2次后,植株叶片上表皮部分增厚,栅栏组织发达,排列紧密。经历4次水淹后,叶片海绵细胞间隙增大,形成较大的气孔窝。气孔下陷形成气孔窝或其上有突出的角质膜可能是由于水分胁迫对叶面积扩展的限制而形成[17]。水淹4次后水桦叶片的木质部与韧皮部之间出现了一些较大空隙的溶生型组织是水桦适应水淹环境而增加的通气途径。通气组织的形成是植物耐涝的重要机制[18],肥大皮孔和溶生性通气组织形成的主要原因是渍水植物茎中乙烯的增加引起的纤维素酶活力增加[19]。植物应答涝渍胁迫依次通过信号传导物质诱导合成、代谢适应和形态适应(比如形成通气组织、不定根等)等过程来完成[20]。叶片和根系中稳定的细胞间和细胞内结构,有助于抗洪,在低氧胁迫下,根系比叶片遭受更严重的解剖和超微结构损伤,下一步将深入研究根系解剖结构。

5.   结论
  • 万州区消落带172 m高程栽植的水桦在间歇性半水淹的条件下产生了较明显的补偿效应,说明水淹植物出水后产生了较高的激发能力,植物在“逃离”水环境后试图加速生长来弥补之前的损失。在水分胁迫下,水桦通过生理和结构上的调整来适应逆境,在万州消落带172 m及以上高程栽培的水桦已经具备了较好的适应能力,这些基础数据为水桦在消落区更低高程、淹水期更长的环境下生存的可能性提供基础数据。近两年,项目组已经在160 m高程栽植水桦并且成活率达到了60%,2020年在高程152 m又定植3年生水桦苗200多株继续接受水淹,后期将继续报道新高程下的水桦水淹耐受特征。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return