• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 34 Issue 1
Jan.  2021
Article Contents
Turn off MathJax

Citation:

Toxicity Test with 8 Fungicides Against 9 Pathogens of Pecan Anthracnose ( Colletotrichum spp.)

  • Objective To test the toxicity of 8 fungicides against Colletotrichum in laboratory and screen out effective fungicides to control pecan anthracnose. Method The method of comparing mycelia growth rate was used to determine the fungistasis of 8 fungicides to 26 strains of 9 Colletotrichum species, then the virulence regression equations were built, and the EC50 values for each fungicide were calculated. Result Among the 8 fungicides tested, Prochloraz and Fludioxonil showed the strongest fungistasis to mycelium growth of all trains, with an average EC50 value of 0.14 mg·L-1 and 0.15 mg·L-1, respectively. Tebuconazole had a strong fungistasis to mycelium growth of C. fioriniae, C. liaoningense, C. tamarilloi and C. americae-borealis (mean EC50 = 0.49 mg·L−1), but showed a moderate inhibitory effect on other 5 species (mean EC50 = 23.60 mg·L−1). Difenoconazole had a strong inhibitory effect on mycelium growth of five Colletotrichum species, C. nymphaeae, C. siamense, C. alienum, C. fioriniae and C. coelogynes (mean EC50 = 0.81 mg·L−1), but showed low virulence for the other 4 species (mean EC50 = 2.00 mg·L−1). The virulence of Mancozeb for the 9 pathogens was the worst, with the average EC50 value of 42.70 mg·L−1. Conclusion Prochloraz and Fludioxonil show high virulence for pecan anthracnose, and are the optimal candidates for field control against pecan anthracnose. It is suggested to use Prochloraz, Fludioxonil, Difenoconazole and Thiophanate-methyl in rotation to control pecan anthracnose effectively and avoid developing resistance.
  • 加载中
  • [1]

    Cannon P F, Damm U, Johnston P R, et al. Colletotrichum-current status and future directions[J]. Studies in Mycology, 2012, 73(1): 181-213.
    [2]

    Dean R, Van K J, Pretorius Z A, et al. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. doi: 10.1111/j.1364-3703.2011.00783.x
    [3] 胡芳名, 谭晓风, 刘惠民, 等. 中国主要经济树种栽培与利用[M] 北京: 中国林业出版社, 2006: 66-71.

    [4] 李 川, 姚小华, 王开良, 等. 薄壳山核桃无性系果实性状指标简化研究[J]. 江西农业大学学报: 自然科学版, 2011, 33(4):696-700.

    [5] 陈 芬, 姚小华, 高焕章, 等. 薄壳山核桃不同无性系开花物候特性观测和比较[J]. 林业科学研究, 2015, 28(2):209-216.

    [6] 常 君, 李 川, 姚小华, 等. 薄壳山核桃无性系含油率及脂肪酸组成分析[J]. 西南师范大学学报: 自然科学版, 2017, 42(8):51-57.

    [7] 王益明, 李瑞瑞, 张 慧, 等. 指数施肥对美国山核桃幼苗生物量及氮积累的影响[J]. 生态学杂志, 2018, 37(10):2920-2926.

    [8] 巨云为, 赵盼盼, 黄 麟, 等. 薄壳山核桃主要病害发生规律及防控[J]. 南京林业大学学报: 自然科学版, 2015, 39(4):31-36.

    [9] 胡秀荣, 鹿连明, 蒲占湑, 等. 7种杀菌剂对柑橘炭疽病菌的室内毒力测定[J]. 中国农学通报, 2010, 26(11):272-275.

    [10] 曲健禄, 武海斌, 范 昆, 等. 柿树炭疽病菌的生物学特性及几种杀菌剂对其的抑制作用[J]. 农药学学报, 2012, 14(5):503-509. doi: 10.3969/j.issn.1008-7303.2012.05.06

    [11] 高杨杨, 禾丽菲, 李北兴, 等. 山东省辣椒炭疽病病原菌的鉴定及高效防治药剂的筛选[J]. 中国农业科学, 2017, 50(8):1452-1464. doi: 10.3864/j.issn.0578-1752.2017.08.009

    [12]

    Damm U, Baroncelli R, Cai L, et al. Colletotrichum: species, ecology and interactions[J]. IMA Fungus, 2010, 1(2): 161-165. doi: 10.5598/imafungus.2010.01.02.08
    [13] 林雄杰, 王贤达, 范国成, 等. 枇杷心腐病病原菌鉴定及其防治药剂室内毒力测定[J]. 植物保护学报, 2016, 43(5):828-835.

    [14]

    Chung W H, Ishii H, Nishlmura K, et al. Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan[J]. Plant Disease, 2006, 90(4): 506-512. doi: 10.1094/PD-90-0506
    [15] 刘 霞, 杨克强, 朱玉凤, 等. 8种杀菌剂对核桃炭疽病病原菌胶孢炭疽菌的室内毒力[J]. 农药学学报, 2013, 15(4):412-420. doi: 10.3969/j.issn.1008-7303.2013.04.08

    [16] 陈 圆, 严婉荣, 赵志祥, 等. 海南省火龙果炭疽菌病病原鉴定及有效药剂筛选[J]. 基因组学与应用生物学, 2017, 6(2):638-643.

    [17] 夏 花, 朱宏建, 周 倩, 等. 湖南芷江辣椒上一种新炭疽病的病原鉴定[J]. 植物病理学报, 2012, 42(2):120-125. doi: 10.3969/j.issn.0412-0914.2012.02.002

    [18]

    Peres N, Souza N L, Zitko S E, et al. Activity of benomyl of control of postbloom fruit drop of citrus caused by Colletotrichum acutatum[J]. Plant Disease, 2002, 86(6): 620-624. doi: 10.1094/PDIS.2002.86.6.620
    [19]

    Talhinhas P, Sreenivasaprasad S, Neves J, et al. Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose[J]. Applied and Environmental Microbiology, 2005, 71(6): 2987-2998. doi: 10.1128/AEM.71.6.2987-2998.2005
    [20]

    Bosch F V D, Oliver R, Berg F V D, et al. Governing principles can guide fungicide-resistance management tactics[J]. Annual Review of Phytopathology, 2014, 52(1): 175-195. doi: 10.1146/annurev-phyto-102313-050158
    [21]

    Hollomon D W. Fungicide resistance: facing the challenge — a review[J]. Plant Protection Science, 2015, 51(4): 170-176.
    [22] 李 河, 周国英, 章怀云, 等. 油茶苗圃炭疽病菌抗药性研究[J]. 植物病理学报, 2012, 42(2):206-213. doi: 10.3969/j.issn.0412-0914.2012.02.014

    [23] 李 河, 李司政, 王悦辰, 等. 油茶苗圃炭疽病原菌鉴定及抗药性[J]. 林业科学, 2019, 55(5):84-94.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2) / Tables(11)

Article views(4665) PDF downloads(79) Cited by()

Proportional views

Toxicity Test with 8 Fungicides Against 9 Pathogens of Pecan Anthracnose ( Colletotrichum spp.)

    Corresponding author: ZHANG Ya-bo, zhangyabo1213@163.com
    Corresponding author: ZHAI Feng-yan, zhaifengyan@163.com
  • 1. He’nan Institute of Science and Technology, Xinxiang 453003, He’nan, China
  • 2. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China

Abstract:  Objective To test the toxicity of 8 fungicides against Colletotrichum in laboratory and screen out effective fungicides to control pecan anthracnose. Method The method of comparing mycelia growth rate was used to determine the fungistasis of 8 fungicides to 26 strains of 9 Colletotrichum species, then the virulence regression equations were built, and the EC50 values for each fungicide were calculated. Result Among the 8 fungicides tested, Prochloraz and Fludioxonil showed the strongest fungistasis to mycelium growth of all trains, with an average EC50 value of 0.14 mg·L-1 and 0.15 mg·L-1, respectively. Tebuconazole had a strong fungistasis to mycelium growth of C. fioriniae, C. liaoningense, C. tamarilloi and C. americae-borealis (mean EC50 = 0.49 mg·L−1), but showed a moderate inhibitory effect on other 5 species (mean EC50 = 23.60 mg·L−1). Difenoconazole had a strong inhibitory effect on mycelium growth of five Colletotrichum species, C. nymphaeae, C. siamense, C. alienum, C. fioriniae and C. coelogynes (mean EC50 = 0.81 mg·L−1), but showed low virulence for the other 4 species (mean EC50 = 2.00 mg·L−1). The virulence of Mancozeb for the 9 pathogens was the worst, with the average EC50 value of 42.70 mg·L−1. Conclusion Prochloraz and Fludioxonil show high virulence for pecan anthracnose, and are the optimal candidates for field control against pecan anthracnose. It is suggested to use Prochloraz, Fludioxonil, Difenoconazole and Thiophanate-methyl in rotation to control pecan anthracnose effectively and avoid developing resistance.

  • 炭疽菌(Colletotrichum spp.)是一类重要的植物病原真菌,分布广泛,在热带和亚热带地区尤为突出[1]。炭疽菌可侵染植物叶、花、果、茎及嫩枝等,引发各种植物炭疽病,造成叶斑、叶枯、花腐、果腐和枝枯等症状,严重时导致落叶、落花和落果,甚至植株死亡,给农林业生产造成极大损失,被称为世界第八大植物致病真菌群[2]

    薄壳山核桃(Carya illinoinensis (Wangenh.) K. Koch)又名美国山核桃、长山核桃,原产于美国与墨西哥北部,是重要的木本油料树种[3-5]。薄壳山核桃种仁油脂含量达65%以上,其中,不饱和脂肪酸含量90%以上,其果实是世界著名干果之一[6]。近年来,随着我国南方薄壳山核桃种植面积的不断扩大,病虫害发生日益严重[7-8],在浙江、江西和云南等薄壳山核桃主栽区爆发黑斑病,落叶、落果现象严重,造成重大的经济损失。研究发现,炭疽菌是引发薄壳山核桃黑斑病的关键病原菌。由于该病具有潜伏期长、发病时间集中、爆发性强等特点,选择高效、低毒的化学药剂进行防治是一种有效策略。

    国内外学者针对炭疽菌的药效试验开展了大量研究,筛选出了一系列高效药剂,但不同种或同种菌不同菌株对杀菌剂存在着一定的特异性[9],如戊唑醇对柿树炭疽菌(C. gloeosporioides (Penz.) Penz. and Sacc)具有较好的抑制作用[10],而对辣椒炭疽菌(C. gloeosporioides (Penz.) Penz. and Sacc)抑制作用较差[11]。作者从不同地区的薄壳山核桃病叶和病果中,分离到26株炭疽菌,通过形态学特征和多基因序列分析共鉴定出9种炭疽菌。先前应用于其它植物炭疽病防治的杀菌剂对薄壳山核桃炭疽病病菌的防治效果尚不清楚。因此,本研究利用菌丝生长速率法测定了8种杀菌剂对9种炭疽菌的室内毒力,以期筛选出高效低毒的杀菌剂,为薄壳山核桃炭疽病的防治提供科学依据。

1.   材料与方法
  • 供试的9种引起薄壳山核桃炭疽病的炭疽菌菌株分别收集自浙江、江西、安徽及云南4地薄壳山核桃感病的叶片和果实(图1),经分离纯化后于PDA斜面培养,4℃保存备用。菌种/株的详细信息见表1

    Figure 1.  Symptoms of black-spot disease of pecan

    种名
    Species
    菌株编号
    Strain number
    采集地点
    Collection locations
    纬度
    N/(°)
    经度
    E/(°)
    采集时间(年-月)
    Collecting time(year-month)
    寄主部位
    Host tissue
    C. fioriniae (Marcelino and
    Gouli) Shivas and Tan
    JD756 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    JD119 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    JD29 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    JD12 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    JD32 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    JD179 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    C. fructicola Prihastuti, Cai and Hyde JD7536 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    JD031 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    JX073 江西吉安 Ji’an, Jiangxi 114.98 27.12 2018-09 枝 Branch
    JX0731 江西吉安 Ji’an, Jiangxi 114.98 27.12 2018-09 枝 Branch
    YN1751 云南玉溪 Yuxi,Yunnan 102.55 24.35 2018-09 果实 Fruit
    YN191 云南玉溪 Yuxi,Yunnan 102.55 24.35 2018-09 果实 Fruit
    YN1911 云南玉溪 Yuxi,Yunnan 102.55 24.35 2018-09 果实 Fruit
    YN151 云南玉溪 Yuxi,Yunnan 102.55 24.35 2018-09 果实 Fruit
    C. siamense Prihastuti, Cai and Hyde JX23 江西吉安 Ji’an, Jiangxi 114.98 27.12 2018-09 枝Branch
    CZ622 安徽滁州 Chuzhou, Anhui 118.32 32.30 2018-09 果实 Fruit
    C. nymphaeae (Pass.) Aa JD3 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 叶片 Leaf
    JD31 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 果实 Fruit
    YN1633 云南玉溪 Yuxi,Yunnan 102.55 24.35 2018-07 果实 Fruit
    JD043 浙江建德 Zhejiang, jiande 119.28 29.48 2018-07 叶片 Leaf
    C. americae-borealis Damm JD2 浙江建德 Zhejiang, jiande 119.28 29.48 2018-07 叶片 Leaf
    D. alienum Weir and Johnst. YN182 云南玉溪 Yuxi,Yunnan 102.55 24.35 2018-07 果实 Fruit
    CZ52 安徽滁州 Chuzhou, Anhui 118.32 32.30 2018-09 果实 Fruit
    C. coelogynes Damm JH111 浙江金华 Jinhu,a Zhejiang 119.65 29.08 2018-09 叶片 Leaf
    C. tamarilloi Damm, Cannon and Crous JD13 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 叶片 Leaf
    C. liaoningense Diao, Zhang, Cai and Liu JD041 浙江建德 Jiande, Zhejiang 119.28 29.48 2018-07 叶片 Leaf

    Table 1.  Information of strains for test

  • 供试药剂原药均由丙酮溶解,分别配制成10 mg·L-1的药剂母液,置于4℃冰箱保存备用。供试药剂及试验浓度梯度见表2

    类别
    Classification
    药剂
    Fungicide
    公司
    Company
      CAS No.试验浓度梯度
    Concentration /(mg·L−1)
    有机硫类 Organosulfurs 代森锰锌 Mancozeb Sigma  8018-01-7 250、200、100、50、25
    甲氧基丙烯酸酯类 Methoxyacrylates 吡唑醚菌酯 yraclostrobin Sigma 175013-180 80、40、20、10、5
    嘧菌酯 Azoxystrobin Macklin 131341-86-1 20、10、5、2.5、1.25
    三唑类 Triazoles 恶醚唑 Difenoconazole Aladdin 119446-68-3 10、5、2.5、1.25、0.625
    戊唑醇 Tebuconazole Sigma 13186-33-8 4、2、1、0.25、0.125
    苯并咪唑类 Benzimidazoles 甲基硫菌灵 Thiophanate-methyl Aladdin 23564-05-8 20、10、5、2.5、1.5
    咪唑类 Imidazoles 咪鲜胺 Prochloraz Aladdin 67747-09-5 1、0.5、0.25、0.125、0.0625
    吡咯类 Pyrroles 咯菌腈 Fludioxonil Aladdin 107534-96-3 2、1、0.5、0.25、0.125

    Table 2.  Fungicides and their concentration for tests

  • 马铃薯琼脂糖(PDA)培养基:去皮马铃薯200 g,葡萄糖20 g,琼脂16 g蒸馏水1000 mL。

  • 采用菌丝生长速率法[10]测定8种杀菌剂对炭疽病菌的毒力。按试验浓度梯度配置含药剂的PDA培养基。将病原菌于PDA培养基上,25℃下预培养5 d后,在靠近菌落边缘打取直径5 mm的菌饼,接种于含药PDA培养基上,每个处理放置1个菌饼,设置3个重复,于25℃培养箱中培养6 d后,采用十字交叉法测量每个菌落的直径,计算抑制率(抑制率=((对照组菌落直径-药剂组直径菌落直径)/对照组直径)×100%)。基于抑制率构建回归方程,并计算抑制中浓度(EC50)。各处理均以丙酮为对照(CK),每处理重复3次。

  • 利用DPSV14.10软件构建各药剂对不同菌种/株的毒力回归方程(95%的置信限),并计算EC50值。利用SPSS 19.0软件,采用单因素方差分析(One-way ANOVA,LSD)进行不同药剂EC50值差异显著性分析。

2.   结果与分析
  • 建立8种药剂对C. fioriniae 6个菌株的毒力回归方程,并计算出各药剂对C. fioriniae及各菌株的抑制中浓度,结果(表3)表明:8种杀菌剂对C. fioriniae菌丝生长的抑制作用差异显著(F(7,40)= 12.507,P<0.001);咯菌腈、咪鲜胺、戊唑醇和恶醚唑的抑制作用最强,平均EC50值分别是0.13、0.15、0.58、0.64 mg·L−1;其次甲基硫菌灵、吡唑醚菌酯及嘧菌酯,平均EC50值分别是4.39、5.50、7.88 mg·L−1;代森锰锌的抑制效果最差,平均EC50值仅为43.40 mg·L−1。同一杀菌剂对同一菌种不同菌株菌丝生长的毒力也存在着差异。戊唑醇对供试的6个菌株菌丝生长抑制作用差异最大,其对JD179菌株的毒力(EC50=2.46)是JD756菌株(EC50=0.04)的61.5倍;其次,吡唑醚菌酯和咯菌腈2种药剂对不同菌株毒力最大差异倍数分别是55.5倍和27.0倍;甲基硫菌灵、恶醚唑、咪鲜胺、嘧菌酯对6个菌株的毒力差异变化相对小,最大差异倍数仅为1.61~3.83倍(表3)。

    杀菌剂
    Fungicides
    菌株
    Strains
    毒力回归方程
    Toxicity regression equation
    抑制中浓度
    EC50(95%CL)/(mg·L−1)
    EC50值(平均值 ± 标准误)
    EC50value(mean ± SE)/(mg·L−1)
    代森锰锌 Mancozeb JD29 y = 2.85 + 1.08 x 98.94(61.32~159.62) 43.40 ± 11.43 a
    JD119 y = 1.95 + 1.88 x 42.17(35.74~49.75)
    JD12 y = 2.75 + 1.45 x 35.46(28.90~43.50)
    JD179 y = 3.53 + 0.96 x 33.76(25.11~45.40)
    JD756 y = 2.57 + 1.72 x 25.92(21.83~30.76)
    JD32 y = 3.56 + 1.04 x 24.18(23.18~25.22)
    吡唑醚菌酯 Pyraclostrobin JD756 y = 6.23 + 2.59 x 13.32(10.01~17.72) 5.50 ± 2.08 b
    JD29 y = 3.38 + 1.74 x 8.63(6.08~12.25)
    JD32 y = 3.48 + 1.78 x 7.17(6.50~7.90)
    JD12 y = 4.50 + 1.23 x 2.53(1.83~3.49)
    JD119 y = 4.97 + 0.98 x 1.09(0.37~3.14)
    JD179 y = 5.36 + 0.58 x 0.24(0.03~2.12)
    咯菌腈 Fludioxonil JD756 y = 5.99 + 1.73 x 0.27(0.20~0.35) 0.13 ± 0.04 b
    JD29 y = 6.16 + 1.74 x 0.22(0.15~0.31)
    JD32 y = 6.33 + 1.78 x 0.18(0.16~0.20)
    JD12 y = 6.47 + 1.23 x 0.06(0.05~0.09)
    JD119 y = 6.54 + 0.98 x 0.03(0.01~0.08)
    JD179 y = 6.28 + 0.58 x 0.01(0.00~0.05)
    恶醚唑 Difenoconazole JD119 y = 5.05 + 1.25 x 0.91(0.66~1.25) 0.64 ± 0.10 b
    JD29 y = 5.06 + 1.17 x 0.89(0.69~1.14)
    JD179 y = 5.12 + 1.02 x 0.76(0.70~0.83)
    JD756 y = 5.29 + 1.05 x 0.53(0.18~1.57)
    JD12 y = 5.39 + 1.01 x 0.42(0.16~1.10)
    JD32 y = 5.55 + 1.15 x 0.33(0.14~0.76)
    嘧菌酯 Azoxystrobin JD32 y = 3.85 + 1.06 x 12.21(10.88~13.72) 7.88 ± 1.56 b
    JD179 y = 3.94 + 1.01 x 11.14(9.51~13.06)
    JD119 y = 3.74 + 1.32 x 9.07(7.73~10.65)
    JD12 y = 4.42 + 0.63 x 8.21(6.40~10.53)
    JD29 y = 4.45 + 1.02 x 3.44(2.87~4.13)
    JD756 y = 4.54 + 0.91 x 3.19(2.53~4.01)
    甲基硫菌灵 Thiophanate-methyl JD119 y = 4.28 + 0.98 x 5.48(4.00~7.52) 4.39 ± 0.31 b
    JD756 y = 3.85 + 1.65 x 4.95(4.27~5.73)
    JD179 y = 4.37 + 0.95 x 4.62(3.12~6.86)
    JD32 y = 4.19 + 1.32 x 4.07(3.78~4.39)
    JD12 y = 4.45 + 0.93 x 3.84(2.59~5.70)
    JD29 y = 4.32 + 1.29 x 3.40(2.79~4.15)
    咪鲜胺 Prochloraz JD756 y = 5.96 + 1.40 x 0.21(0.17~0.25) 0.15 ± 0.02 b
    JD119 y = 6.19 + 1.60 x 0.18(0.14~0.24)
    JD29 y = 6.15 + 1.34 x 0.14(0.11~0.17)
    JD32 y = 6.05 + 1.16 x 0.13(0.09~0.16)
    JD12 y = 6.01 + 1.06 x 0.11(0.06~0.21)
    JD179 y = 6.16 + 1.21 x 0.11(0.08~0.16)
    戊唑醇 TebuconazoleJD179y = 4.06 + 1.05 x2.46(2.18~2.73)0.58 ± 0.38 b
    JD29y = 5.72 + 1.34 x0.29(0.16~0.55)
    JD32y = 5.63 + 1.18 x0.29(0.22~0.38)
    JD12y = 5.52 + 0.88 x0.25(0.13~0.49)
    JD119y = 5.41 + 0.44 x0.12(0.06~0.23)
    JD756y = 5.79 + 0.55 x0.04(0.02~0.06)
      注:EC50平均值后不同小写字母标注,表示在同一列数据中P < 0.05水平上差异显著。下同。

      Note: the representation marked with different lowercase letters after the average value of EC50 is significantly different at the level of P < 0.05 in the same column of data. The same followed.

    Table 3.  Toxicity test of different fungicides against mycelial growth of C. fioriniae

  • 8种杀菌剂对C. fructicola菌丝生长的抑制作用差异显著(F(7,56) = 7.320,P < 0.001)(表4)。咯菌腈和咪鲜胺的抑制作用最强,平均EC50值分别为0.11、0.13 m·L−1;对菌株JX073的抑制效果较好的杀菌剂有吡唑醚菌酯(EC50 = 0.01 mg·L−1)、甲基硫菌灵(EC50 = 0.14 mg·L−1)、咯菌腈(EC50 = 0.39 mg·L−1)、代森锰锌(EC50 = 0.45 mg·L−1)、咪鲜胺(EC50 = 0.61 mg·L−1);戊唑醇对菌株JX0731(EC50 = 0.53 mg·L−1)抑制效果较好。

    杀菌剂
    Fungicides
    菌株
    Strains
    毒力回归方程
    Toxicity regression equation
    抑制中浓度
    EC50(95%CL)/(mg·L−1)
    EC50值(平均值 ± 标准误)
    EC50value(mean ± SE)/(mg·L−1)
    代森锰锌 Mancozeb JD7536 y = 6.15 + 1.41 x 6.11(3.05~12.24) 40.31 ± 10.74 a
    JD031 y = 4.45 + 1.15 x 2.98(1.32~6.75)
    JX073 y = 5.30 + 0.85 x 0.45(0.23~0.86)
    JX0731 y = 2.60 + 1.59 x 32.35(24.57~42.59)
    YN1751 y = 2.96 + 1.65 x 17.23(14.31~20.75)
    YN191 y = 2.54 + 1.37 x 62.11(36.11~106.83)
    YN1911 y = 3.47 + 1.14 x 22.14(19.26~25.46)
    YN151 y = 2.33 + 1.80 x 30.39(26.42~34.96)
    吡唑醚菌酯 Pyraclostrobin JD7536 y = 6.15 + 1.41 x 0.15(0.08~0.31) 4.31 ± 1.41 bc
    JD031 y = 6.30 + 1.15 x 0.07(0.03~0.17)
    JX073 y = 6.66 + 0.85 x 0.01(0.01~0.02)
    JX0731 y = 4.27 + 1.29 x 1.29(2.10~6.49)
    YN1751 y = 3.04 + 1.76 x 12.88(10.62~15.62)
    YN191 y = 4.68 + 1.08 x 1.97(0.91~4.28)
    YN1911 y = 4.30 + 1.39 x 3.18(2.20~4.60)
    YN151 y = 3.63 + 1.83 x 5.58(3.23~9.64)
    咯菌腈 Fludioxonil JD7536 y = 4.76 + 0.95 x 1.78(1.58~2.01) 0.11 ± 0.03 b
    JD031 y = 4.93 + 0.89 x 1.18(0.85~1.65)
    JX073 y = 5.37 + 0.91 x 0.39(0.26~0.60)
    JX0731 y = 6.34 + 1.29 x 0.09(0.05~0.16)
    YN1751 y = 5.87 + 1.76 x 0.32(0.27~0.39)
    YN191 y = 6.41 + 1.08 x 0.05(0.02~0.11)
    YN1911 y = 6.52 + 1.39 x 0.08(0.06~0.12)
    YN151 y = 6.57 + 1.83 x 0.14(0.08~0.24)
    恶醚唑 DifenoconazoleJD7536y = 3.86 + 1.33 x7.14(5.33~9.55)1.25 ± 0.21 b
    JD031y = 3.23 + 1.62 x12.43(9.95~15.53)
    JX073y = 3.79 + 1.40 x7.31(5.91~9.03)
    JX0731y = 4.55 + 1.29 x2.23(1.59~3.11)
    YN1751y = 5.09 + 0.99 x0.82(0.53~1.26)
    YN191y = 5.09 + 1.10 x0.83(0.59~1.17)
    YN1911y = 4.38 + 1.46 x1.46(1.76~4.01)
    YN151y = 4.81 + 1.47 x1.34(1.04~1.73)
    嘧菌酯 AzoxystrobinJD7536y = 4.24 + 1.39 x3.54(2.95~4.24)6.99 ± 1.10 bc
    JD031y = 4.52 + 1.84 x1.81(1.19~2.77)
    JX073y = 4.59 + 1.70 x1.75(1.12~2.74)
    JX0731y = 3.47 + 1.83 x6.87(6.05~7.81)
    YN1751y = 4.94 + 0.90 x1.16(0.63~2.13)
    YN191y = 3.47 + 2.03 x5.64(4.36~7.29)
    YN1911y = 3.35 + 1.96 x6.95(6.03~8.01)
    YN151y = 3.78 + 1.31 x8.45(7.22~9.88)
    甲基硫菌灵 Thiophanate~methylJD7536y = 6.04 + 1.28 x0.15(0.12~0.19)2.42 ± 0.26 b
    JD031y = 5.95 + 0.85 x0.08(0.06~0.09)
    JX073y = 6.58 + 1.89 x0.14(0.10~0.22)
    JX0731y = 4.31 + 1.55 x2.81(2.04~3.87)
    YN1751y = 4.34 + 1.71 x2.43(1.77~3.34)
    YN191y = 4.74 + 1.55 x1.47(1.18~1.82)
    YN1911y = 4.13 + 1.76 x3.14(2.44~4.03)
    YN151y = 4.37 + 1.59 x2.48(1.82~3.39)
    咪鲜胺 ProchlorazJD7536y = 4.93 + 0.66 x1.27(0.63~2.59)0.13 ± 0.03 b
    JD031y = 4.80+ 1.12 x1.51(0.77~2.94)
    JX073y = 5.30 + 1.37 x0.61(0.40~0.92)
    JX0731y = 6.17 + 1.00 x0.07(0.05~0.09)
    YN1751y = 6.39 + 1.13 x0.06(0.04~0.09)
    YN191y = 6.87 + 2.40 x0.17(0.14~0.20)
    YN1911y = 6.50 + 1.51 x0.10(0.08~0.12)
    YN151y = 6.04 + 1.87 x0.28(0.18~0.43)
    戊唑醇 TebuconazoleJD7536y = 2.35 + 1.30 x107.40(57.04~202.53)17.07 ± 9.45 c
    JD031y = 3.55 + 1.02 x26.31(23.67~29.25)
    JX073y = 3.18 + 1.32 x24.38(18.02~32.98)
    JX0731y = 5.41 + 1.49 x0.53(0.38~0.74)
    YN1751y = 3.71 + 1.31 x9.59(4.44~20.73)
    YN191y = 2.55 + 1.44 x50.02(34.61~72.30)
    YN1911y = 2.77 + 1.22 x68.63(42.53~110.76)
    YN151y = 4.53 + 0.72 x4.43(1.28~15.33)

    Table 4.  Toxicity test of different fungicides against mycelial growth of C. fructicola

  • 8种杀菌剂对C. nymphaeae菌丝生长的抑制作用存在显著差异(F(7,24) = 5.35,P = 0.001)(表5)。咪鲜胺、咯菌腈和恶醚唑对菌丝生长抑制作用最好;其次为嘧菌酯、戊唑醇、甲基硫菌灵、吡唑醚菌酯;代森锰锌抑制作用最差。同一杀菌剂对不同菌株菌丝生长的毒力也存在着差异。戊唑醇的EC50值变异最大,对JD043菌株的EC50值是JD3的326.67倍;其次,吡唑醚菌酯、嘧菌酯和恶醚唑的毒力差异倍数分别是14.36、11.30、11.17倍;咪鲜胺、咯菌腈、代森锰锌及甲基硫菌灵对4个供试菌株的毒力差异相对稳定,毒力差异倍数为2.33~4.61倍。

    杀菌剂
    Fungicides
    菌株
    Strains
    毒力回归方程
    Toxicity regression equation
    抑制中浓度
    EC50(95%CL)/(mg·L−1)
    EC50 值(平均值 ± 标准误)
    EC50 value(Mean ± SE)/(mg·L−1)
    代森锰锌 MancozebJD3y = 2.77 + 1.40 x39.44(35.04~44.40)50.73 ± 19.83 a
    JD31y = 2.43 + 1.26 x106.50(63.95~187.63)
    JD043y = 3.66 + 0.93 x28.10(26.47~29.83)
    YN1633y = 2.98 + 1.43 x25.84(18~37.11)
    吡唑醚菌酯 PyraclostrobinJD3y = 2.71 + 2.30 x79.83(7.25~13.33)11.36 ± 3.69 b
    JD31y = 3.72 + 1.71 x5.56(5.00~6.19)
    JD043y = 3.42 + 1.76 x7.94(7.36~8.57)
    YN1633y = 3.33 + 1.24 x22.12(13.57~36.05)
    咯菌腈 FludioxonilJD3y = 6.40 + 2.30 x0.25(0.18~0.33)0.29 ± 0.09 b
    JD31y = 6.47 + 1.71 x0.14(0.12~0.15)
    JD043y = 6.23 + 1.76 x0.20(0.18~0.21)
    YN1633y = 5.32 + 1.24 x0.55(0.34~0.90)
    恶醚唑 DifenoconazoleJD3y = 5.60 + 0.64 x0.12(0.05~0.26)0.80 ± 0.28 b
    JD31y = 4.83 + 1.35 x1.34(1.16~1.55)
    JD043y = 5.18 + 0.77 x0.59(0.30~1.17)
    YN1633y = 4.92 + 1.05 x1.18(0.93~1.50)
    嘧菌酯 AzoxystrobinJD3y = 4.02 + 1.57 x4.18(3.20~5.47)2.70 ± 0.89 b
    JD31y = 4.09 + 1.51 x4.01(3.16~5.09)
    JD043y = 4.53 + 1.37 x2.22(1.63~3.01)
    YN1633y = 5.23 + 0.54 x0.37(0.20~0.67)
    甲基硫菌灵 Thiophanate~methylJD3y = 4.21 + 1.02 x5.95(4.84~7.32)5.78 ± 1.60 b
    JD31y = 4.25 + 1.06 x5.11(4.15~6.30)
    JD043y = 4.75 + 0.76 x2.15(1.05~4.38)
    YN1633y = 3.60 + 1.40 x9.91(8.03~12.23)
    咪鲜胺 ProchlorazJD3y = 5.84 + 0.82 x0.09(0.07~0.12)0.13 ± 0.03 b
    JD31y = 5.79 + 0.82 x0.11(0.08~0.16)
    JD043y = 6.09 + 1.59 x0.21(0.17~0.26)
    YN1633y = 6.17 + 1.27 x0.12(0.10~0.15)
    戊唑醇 TebuconazoleJD3y = 5.85 + 0.71 x0.06(0.04~0.10)5.08 ± 4.87 b
    JD31y = 5.55 + 0.70 x0.16(0.06~0.42)
    JD043y = 1.71 + 2.54 x19.60(14.71~26.31)
    YN1633y = 5.39 + 1.00 x0.41(0.27~0.63)

    Table 5.  Toxicity test of different fungicides against mycelial growth of C. nymphaeae

  • 8种杀菌剂对C. siamense菌丝生长的抑制作用差异显著(F(7,8) = 22.553,P < 0.001)(表6)。咯菌腈、咪鲜胺的毒力较高,代森锰锌的抑制作用最差;吡唑醚菌酯、恶醚唑、甲基硫菌灵和戊唑醇对JX23菌株的抑制作用高于CZ622菌株,戊唑醇对2个菌株的毒力变异最大,对CZ622菌株的EC50值是JX23菌株的14.34倍。

    杀菌剂
    Fungicides
    菌株
    Strains
    毒力回归方程
    Toxicity regression equation
    抑制中浓度
    EC50(95%CL)/(mg·L−1)
    EC50值(平均值 ± 标准误)
    EC50value(Mean ± SE)/(mg·L−1)
    代森锰锌 MancozebJX23y = 1.68 + 2.08 x39.4(29.96~51.97)44.35 ± 4.89 a
    CZ622y = 2.82 + 1.29 x49.2(39.65~61.13)
    吡唑醚菌酯 PyraclostrobinJX23y = 6.47 + 0.87 x0.82(0.06~10.85)3.95 ± 3.13 b
    CZ622y = 4.22 + 0.92 x7.07(5.26~9.52)
    咯菌腈 FludioxonilJX23y = 6.47 + 0.87 x0.02(0.00~0.27)0.10 ± 0.08 b
    CZ622y = 5.69 + 0.92 x0.18(0.13~0.24)
    恶醚唑 DifenoconazoleJX23y = 5.25 + 0.86 x0.51(0.44~0.59)0.98 ± 0.47 b
    CZ622y = 4.85 + 0.93 x1.44(1.28~1.63)
    嘧菌酯 AzoxystrobinJX23y = 4.52 + 0.71 x4.69(3.51~6.27)4.03 ± 0.67 b
    CZ622y = 4.41 + 1.12 x3.36(2.95~3.84)
    甲基硫菌灵 Thiophanate~methylJX23y = 4.28 + 1.22 x3.89(3.52~4.31)6.06 ± 2.17 b
    CZ622y = 3.86 + 1.25 x8.22(5.88~11.48)
    咪鲜胺 ProchlorazJX23y = 6.31 + 1.79 x0.19(0.15~0.23)0.19 ± 0.01 b
    CZ622y = 6.21 + 1.61 x0.18(0.12~0.26)
    戊唑醇 TebuconazoleJX23y = 5.04 + 1.41 x0.93(0.83~1.05)7.14 ± 6.21 b
    CZ622y = 2.75 + 2.00 x13.34(9.01~19.75)

    Table 6.  Toxicity test of different fungicides against mycelial growth of C. siamense

  • 8种杀菌剂对C. alienum菌丝生长的抑制作用差异显著(F(7,8) = 18.45,P < 0.002)(表7)。咯菌腈、咪鲜胺及恶醚唑的抑制作用相对较好,平均EC50值分别为0.09、0.14、0.90 mg·L−1。其次是嘧菌酯、甲基硫菌灵及吡唑醚菌酯3种药剂。同一杀菌剂对不同菌株的菌丝生长抑制作用也具有差异,戊唑醇对供试菌株抑制差异最大,最高EC50值是最低值的215.69倍;咪鲜胺、恶醚唑毒力差异倍数分别是3.00、2.98倍;甲基硫菌灵、代森锰锌、吡唑醚菌酯、咯菌腈、嘧菌酯对2个供试菌株的毒力差异倍数最小,为1.34~1.79倍。

    杀菌剂
    Fungicides
    菌株
    Strains
    毒力回归方程
    Toxicity regression equation
    抑制中浓度
    EC50(95%CL)/(mg·L−1)
    EC50值(平均值 ± 标准误)
    EC50value(Mean ± SE)/(mg·L−1)
    代森锰锌 MancozebYN182y = 2.07 + 1.75 x47.35(39.74~56.42)56.41 ± 9.07 a
    CZ52y = 2.35 + 1.46 x65.40(51.73~82.88)
    吡唑醚菌酯 PyraclostrobinYN182y = 4.57 + 0.96 x2.82(1.52~5.23)3.57 ± 0.75 b
    CZ52y = 3.88 + 1.76 x4.32(1.62~11.48)
    咯菌腈 FludioxonilYN182y = 6.11 + 0.96 x0.07(0.04~0.13)0.09 ± 0.02 b
    CZ52y = 6.70 + 1.76 x0.11(0.04~0.29)
    恶醚唑 DifenoconazoleYN182y = 4.81 + 1.47 x1.34(1.04~1.73)0.90 ± 0.45 b
    CZ52y = 5.26 + 0.74 x0.45(0.37~0.55)
    嘧菌酯 AzoxystrobinYN182y = 3.52 + 2.44 x4.06(2.98~5.53)3.16 ± 0.90 b
    CZ52y = 4.23 + 2.16 x2.27(1.36~3.80)
    甲基硫菌灵 Thiophanate~methylYN182y = 4.40 + 1.34 x2.83(2.25~3.56)3.30 ± 0.48 b
    CZ52y = 3.96 + 1.80 x3.78(1.29~11.07)
    咪鲜胺 ProchlorazYN182y = 5.94 + 0.80 x0.07(0.05~0.09)0.14 ± 0.07 b
    CZ52y = 6.61 + 2.36 x0.21(0.13~0.33)
    戊唑醇 TebuconazoleYN182y = 5.56 + 1.61 x0.45(0.21~0.96)48.75 ± 28.30 a
    CZ52y = 3.21 + 0.90 x97.06(85.44~110.25)

    Table 7.  Toxicity test of different fungicides against mycelial growth of C. alienum

  • 8种杀菌剂对C. tamarilloi菌丝生长的具有一定的抑制作用(表8),其中,咯菌腈、咪鲜胺和戊唑醇对C. tamarilloi菌株的抑制作用较好,EC50值小于1.00;而代森锰锌的对C. tamarilloi菌株的抑制作用较差(EC50 = 71.63)。

    杀菌剂 Fungicides菌株 Strains毒力回归方程 Toxicity regression equation抑制中浓度 EC50(95%CL)/(mg·L−1)
    代森锰锌 MancozebJD13y = 2.07 + 1.58 x71.63(35.17~145.87)
    吡唑醚菌酯 PyraclostrobinJD13y = 6.37 + 1.02 x1.89(1.24~2.88)
    咯菌腈 FludioxonilJD13y = 5.33 + 1.02 x0.05(0.02~0.08)
    恶醚唑 DifenoconazoleJD13y = 4.51 + 2.00 x1.75(1.46~2.11)
    嘧菌酯 AzoxystrobinJD13y = 3.52 + 1.15 x19.70(14.06~27.76)
    甲基硫菌灵 Thiophanate-methylJD13y = 4.21 + 1.07 x5.51(4.51~6.73)
    咪鲜胺 ProchlorazJD13y = 6.13 + 1.14 x0.10(0.07~0.15)
    戊唑醇 TebuconazoleJD13y = 5.12 + 0.31 x0.41(0.20~0.85)

    Table 8.  Toxicity test of different fungicides against mycelial growth of C. tamarilloi

  • 8种杀菌剂对C. americae-borealis菌丝生长的抑制作用有明显差异(表9)。咪鲜胺、咯菌腈及戊唑醇对供试菌株菌丝生长有较强的抑制作用,EC50值为0.01~0.48 mg·L−1;代森锰锌EC50值为47.10 mg·L−1,对C. americae-borealis的毒力相对较差。

    杀菌剂 Fungicides菌株 Strains毒力回归方程 Toxicity regression equation抑制中浓度 EC50(95%CL)/(mg·L−1)
    代森锰锌 MancozebJD2y = 2.82 + 1.30 x47.10(39.55~56.12)
    吡唑醚菌酯 PyraclostrobinJD2y = 3.72 + 1.61 x6.21(4.66~8.28)
    咯菌腈 FludioxonilJD2y = 6.30 + 1.61 x0.16(0.12~0.21)
    恶醚唑 DifenoconazoleJD2y = 4.86 + 1.84 x1.20(1.03~1.40)
    嘧菌酯 AzoxystrobinJD2y = 4.04 + 1.14 x6.93(6.29~7.63)
    甲基硫菌灵 Thiophanate-methylJD2y = 4.18 + 1.79 x2.88(1.81~4.58)
    咪鲜胺 ProchlorazJD2y = 6.83 + 0.96 x0.01(0.01~0.02)
    戊唑醇 TebuconazoleJD2y = 5.50 + 1.57 x0.48(0.22~1.05)

    Table 9.  Toxicity test of different fungicides against mycelial growth of C. americae-borealis

  • 8种杀菌剂对C. coelogynes菌丝的生长均存在抑制作用(表10),其中,咪鲜胺对菌丝生长抑制效果佳,EC50值为0.10 mg·L−1;代森锰锌和戊唑醇对菌丝生长的抑制作用较差,平均EC50值为33.29和62.40 mg·L−1

    杀菌剂 Fungicides菌株 Strains毒力回归方程 Toxicity regression equation抑制中浓度 EC50(95%CL)/(mg·L−1)
    代森锰锌 MancozebJH111y = 2.75 + 1.48 x33.29(25.00~44.32)
    吡唑醚菌酯 PyraclostrobinJH111y = 3.28 + 1.86 x8.36(6.36~11.00)
    咯菌腈 FludioxonilJH111y = 6.27 + 1.86 x0.21(0.16~0.27)
    恶醚唑 DifenoconazoleJH111y = 5.35 + 0.04 x0.77(0.68~1.06)
    嘧菌酯 AzoxystrobinJH111y = 3.98 + 1.55 x4.56(3.40~6.12)
    甲基硫菌灵 Thiophanate-methylJH111y = 4.46 + 1.07 x3.17(2.92~3.44)
    咪鲜胺 ProchlorazJH111y = 6.49 + 1.51 x0.10(0.07~0.15)
    戊唑醇 TebuconazoleJH111y = 2.16 + 1.58 x62.40(51.52~75.64)

    Table 10.  Toxicity test of different fungicides against mycelial growth of C. coelogynes

  • 8种杀菌剂对C. liaoningens菌丝的生长均表现出一定的抑制作用(表11)。8种杀菌剂中,咪鲜胺(EC50 = 0.13 mg·L−1)、咯菌腈(EC50 = 0.24 mg·L−1)及戊唑醇(EC50 = 0.48 mg·L−1)EC50值均小于1.00,抑制效果较好。

    杀菌剂 Fungicides菌株 Strains毒力回归方程 Toxicity regression equation抑制中浓度 EC50(95%CL)/(mg·L−1)
    代森锰锌 MancozebJD041y = 3.76 + 0.94 x21.10(18.24~24.55)
    吡唑醚菌酯 PyraclostrobinJD041y = 6.18 + 1.91 x9.54(6.34~14.51)
    咯菌腈 FludioxonilJD041y = 5.08 + 1.51 x0.24(0.16~0.36)
    恶醚唑 DifenoconazoleJD041y = 4.79 + 0.88 x1.72(1.59~1.86)
    嘧菌酯 AzoxystrobinJD041y = 3.67 + 1.37 x9.38(8.39~10.49)
    甲基硫菌灵 Thiophanate-methylJD041y = 4.11 + 1.11 x6.29(5.36~7.39)
    咪鲜胺 ProchlorazJD041y = 5.86 + 0.97 x0.13(0.10~0.17)
    戊唑醇 TebuconazoleJD041y = 5.48 + 1.49 x0.48(0.40~0.57)

    Table 11.  Toxicity test of different fungicides against mycelial growth of C. liaoningense

  • 将8种杀菌剂对26株炭疽菌的毒力进行了总体分析,结果(图2)表明:8种杀菌剂对供试菌株的毒力不同,其中,咪鲜胺和咯菌腈2种药剂对所筛选的9种炭疽菌、26个菌株的菌丝生长抑制作用最强,EC50值为0.01~0.28 mg·L−1,平均EC50值分别为0.14和0.15 mg·L−1;其次为恶醚唑,EC50值为0.51~2.08 mg·L−1,平均EC50值为1.08 mg·L−1;再次为甲基硫菌灵、吡唑醚菌酯和嘧菌酯,EC50值为0.24~22.12 mg·L−1,平均EC50值分别为4.13、6.12、6.94 mg·L−1;代森锰锌对26株炭疽菌菌丝抑制作用差异较大,EC50值均在17.23 mg·L−1以上,其中,3株炭疽菌EC50值超过100.00 mg·L−1

    Figure 2.  Virulence of 8 fungicides for 26 strains of Collelotrichum spp.

3.   讨论
  • 本研究采用菌丝生长速率法,测定了8种杀菌剂对9种炭疽菌、26个菌株的室内毒力,结果表明:咪鲜胺和咯菌腈对26株炭疽菌均具有较高的生长抑制作用,且菌株对其均较敏感,其次为恶醚唑和甲基硫菌灵。

    炭疽菌属(Colletotrichum Cda.)是一个复杂的属,包括多个致病种,且部分种致病力极强,给农业生产带来巨大损失[1, 12]。大量研究表明,不同炭疽菌种/菌株对杀菌剂的敏感性存在显著差异[13-15]。刘霞等[15]研究表明,咪鲜胺和戊唑醇对4株胶孢炭疽菌(C. gloeosporioides Penz.)菌丝生长的抑制作用较高,甲基硫菌灵和代森锰锌对4株胶孢炭疽菌菌丝抑制效果差异显著。高杨杨等[11]研究认为,吡唑醚菌酯、咯菌腈对尖孢炭疽菌(C. acutatum Simmonds)的菌丝生长和孢子萌发均具有很高的抑制效果。陈圆等[16]研究认为,25%吡唑醚菌酯乳油、50%咪鲜胺锰盐可湿性粉剂和430 g·L−1戊唑醇悬浮剂对火龙果(Hylocereus polyrhizus Webb. Britton & Rose)胶孢炭疽菌的抑制效果较好。也有研究表明,甲基硫菌灵、代森锰锌和咪鲜胺等常用杀菌剂对炭疽菌引起的辣椒炭疽病的田间防治效果差[17];炭疽菌对甲基硫菌灵等苯并咪唑类药剂具有较强的耐受力[18-19]。本研究结果表明,所选用的8种药剂(6类)对9种炭疽菌的菌丝生长抑制效果显著不同,且同一药剂对同种炭疽菌的毒力因菌株的不同呈现出明显差异;所筛选的咪鲜胺和咯菌腈适用性最广,对9种炭疽菌、26个菌株均具有较高的生长抑制作用,其次为恶醚唑和甲基硫菌灵;但代森锰锌对9种炭疽菌、26个菌株的抑制作用不明显。

    研究表明,同一药剂的反复施用易迫使病虫产生抗药性[20-21]。李河等[22-23]发现,我国油茶(Camellia oleifera Abel.)苗圃炭疽病菌已对多菌灵、乙霉威和戊唑醇产生严重的抗药性。本研究结果表明,戊唑醇和代森锰锌对26个菌株的EC50值差异较大,分布在0.04~100.00 mg·L−1,吡唑醚菌酯和嘧菌酯次之,EC50值分布在0.24~22.12 mg·L−1之间,说明个别菌株对以上4种药剂敏感性可能降低;同时还发现,来自不同地理位置的菌株对不同杀菌剂的敏感性不同。浙江建德和浙江金华的菌株,对咪鲜胺、咯菌腈和戊唑醇较敏感;来自云南玉溪的菌株对咪鲜胺、咯菌腈、恶醚唑和甲基硫菌灵较敏感,安徽滁州的菌株对咪鲜胺、咯菌腈、恶醚唑和嘧菌酯较敏感;江西吉安的菌株对咪鲜胺、咯菌腈、吡唑醚菌酯和甲基硫菌灵较敏感。建议在生产中因时因地合理选择杀菌剂防治薄壳山核桃黑斑病。

4.   结论
  • 由炭疽菌引起的薄壳山核桃炭疽病是目前危害薄壳山核桃的主要病害。本研究表明,咪鲜胺和咯菌腈抑制薄壳山核桃炭疽菌适用性最广,效果最佳,其次为恶醚唑和甲基硫菌灵,4种杀菌剂为防治薄壳山核桃炭疽病的有效药剂。为避免产生抗药性,建议在生产中轮换使用咪鲜胺、咯菌腈、恶醚唑和甲基硫菌灵等杀菌剂。

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return