• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 35 Issue 5
Oct.  2022
Article Contents
Turn off MathJax

Citation:

Evaluation on Germplasm Resources of Cyclocarya paliurus and Its Oriented Selection of Superior Families and Trees

  • Corresponding author: FANG Sheng-zuo, fangsz@njfu.edu.cn
  • Received Date: 2022-01-16
    Accepted Date: 2022-04-23
  • Objective In order to select superior families and individual plants which is suitable for planting in Nanjing and surrounding areas for providing a theoretical basis for the oriented silviculture of Cyclocarya paliurus plantations. Method The 3.5-year old germplasm resources of C. paliurus trees were comprehensively evaluated in this study. The 31 families of C. paliurus trees were used as test materials to determine the traits of growth and the leaf contents of total flavonoid, triterpenoid, and polyphenol. And cluster analysis and entropy method were used to screen superior families and individual trees based on the variations in traits. Results Significant variations were observed in tree height, diameter at the base, and the leaf contents of total flavonoid, triterpenoid and polyphenol among different families. Hierarchical cluster analysis showed that the 31 families of C. paliurus were classified into four distinct groups. The C. paliurus families in cluster 1, cluster 2 and cluster 3 could be recommended as the families for high accumulation of total triterpenoid, total polyphenol, and total flavonoid, respectively. In contrast, the families in cluster 4 showed poor performance in all measured metabolites. Seven superior families (GXJZS7#、GZSQ12#、GXLS26#、HNYS2#、AHQLF13#、SCMC31# and GXJZS1#) of C. paliurus were preliminary selected for the accumulation of target secondary metabolites using entropy method. Within the seven superior families, all the trees were further assessed, and eleven superior individuals were selected. Conclusion There are significant variations in growth and leaf secondary metabolites among the tested germplasm resources, showing a great potential for the selecting and breeding of C. paliurus. Based on the comprehensive assessment, seven superior families and eleven excellent individuals are selected for further test and future application.
  • 加载中
  • [1]

    Fang S Z, Wang J Y, Wei Z Y, et al. Methods to break seed dormancy in Cyclocarya paliurus (Batal) Iljinskaja[J]. Scientia Horticulturae, 2006, 110(3): 305-309. doi: 10.1016/j.scienta.2006.06.031
    [2] 方升佐, 洑香香. 青钱柳资源培育与开发利用的研究进展[J]. 南京林业大学学报:自然科学版, 2007, 31(1):95-100.

    [3]

    Xie J H, Xie M Y, Nie S P, et al. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal. ) Iljinskaja[J]. Food Chemistry, 2009, 119(4): 1626-1632.
    [4]

    Zhou M M, Lin Y, Fang S Z, et al. Phytochemical content and antioxidant activity in aqueous extracts of Cyclocarya paliurus leaves collected from different populations[J]. PeerJ, 2019, 7: e6492. doi: 10.7717/peerj.6492
    [5] 邹荣灿, 吴少锦, 张 妮, 等. 青钱柳的分布、化学成分及药理作用研究进展[J]. 中国药房, 2017, 28(31):4449-4451. doi: 10.6039/j.issn.1001-0408.2017.31.33

    [6]

    Yang H M, Yin Z Q, Zhao M M, et al. Pentacyclic triterpenoids from Cyclocarya paliurus and their antioxidant activities in FFA-induced HepG2 steatosis cells[J]. Phytochemistry, 2018, 151: 119-127. doi: 10.1016/j.phytochem.2018.03.010
    [7]

    Fu X X, Zhou X D, Deng B, et al. Seasonal and genotypic variation of water-soluble polysaccharide content in leaves of Cyclocarya paliurus[J]. Southern Forests:a Journal of Forest Science, 2015, 77(3): 231-236. doi: 10.2989/20702620.2015.1010698
    [8]

    Szakiel A, Pączkowski C, Henry M. Influence of environmental abiotic factors on the content of saponins in plants[J]. Phytochemistry Reviews, 2011, 10(4): 471-491. doi: 10.1007/s11101-010-9177-x
    [9] 童再康, 斯金平, 刘 饶. 不同种源厚朴酚类物质含量变异与遗传的初步研究[J]. 林业科学研究, 2000, 13(3):257-261. doi: 10.3321/j.issn:1001-1498.2000.03.005

    [10] 鞠建明, 钱士辉, 钱大玮, 等. 银杏半同胞家系种质资源质量的分析与评价[J]. 林业科技开发, 2007, 21(6):32-34. doi: 10.3969/j.issn.1000-8101.2007.06.010

    [11]

    Fang S Z, Yang W X, Chu X L, et al. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus[J]. Food Chemistry, 2011, 124(4): 1382-1386. doi: 10.1016/j.foodchem.2010.07.095
    [12]

    Liu Y, Chen P, Zhou M M, et al. Geographic variation in the chemical composition and antioxidant properties of phenolic compounds from Cyclocarya paliurus (Batal) Iljinskaja leaves[J]. Molecules, 2018, 23(10): 2440. doi: 10.3390/molecules23102440
    [13] 邓 波, 刘桂华, 余云云, 等. 遮荫和种源对青钱柳三萜类化合物积累的影响[J]. 生态学杂志, 2018, 37(2):383-390.

    [14] 田 力, 徐骋炜, 尚旭岚, 等. 青钱柳药用优良单株评价与选择[J]. 南京林业大学学报:自然科学版, 2021, 45(1):21-28.

    [15]

    Deng B, Fang S Z, Yang W X, et al. Provenance variation in growth and wood properties of juvenile Cyclocarya paliurus[J]. New Forests, 2014, 45(5): 625-639. doi: 10.1007/s11056-014-9424-x
    [16] 林 源, 陈 培, 周明明, 等. 天然居群青钱柳叶主要生物活性物质及抗氧化活性研究[J]. 南京林业大学学报:自然科学版, 2020, 44(2):10-16.

    [17]

    Fan J P, He C H. Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high-performance liquid chromatography method[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(3): 950-956. doi: 10.1016/j.jpba.2006.01.044
    [18]

    Xie P J, Huang L X, Zhang C H, et al. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L. ) extracts and their structure-activity relationships[J]. Journal of Functional Foods, 2015, 16: 460-471. doi: 10.1016/j.jff.2015.05.005
    [19] 张 锐, 顾志荣, 吕 鑫, 等. 锁阳药材质量多指标评价体系构建及权重分配方法优化[J]. 中国中医药信息杂志, 2021, 28(12):74-81.

    [20] 李爱民, 吕敏丽, 周春鸣. 同质园栽培下的湖南鱼腥草居群叶表型性状多样性分析[J]. 植物科学学报, 2018, 36(1):73-85. doi: 10.11913/PSJ.2095-0837.2018.10073

    [21] 刘济铭, 陈 仲, 翁学煌, 等. 无患子属种质资源种实性状变异及综合评价[J]. 林业科学, 2019, 55(6):44-54. doi: 10.11707/j.1001-7488.20190606

    [22] 欧建德, 罗 宁. 南方红豆杉珍贵用材优良家系和单株配合选择[J]. 中国农学通报, 2017, 33(22):41-46. doi: 10.11924/j.issn.1000-6850.casb16070046

    [23] 佘诚棋, 杨万霞, 方升佐, 等. 青钱柳种源间苗期性状变异分析[J]. 南京林业大学学报:自然科学版, 2010, 34(1):34-38.

    [24] 杨万霞, 佘诚棋, 方升佐. 青钱柳叶中黄酮类化合物的地理变异[J]. 浙江林学院学报, 2009, 26(4):522-527.

    [25]

    Sun C W, Shang X L, Ding H F, et al. Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves[J]. Journal of Forestry Research, 2021, 32(2): 805-814. doi: 10.1007/s11676-020-01139-1
    [26] 白史且, 苟文龙, 张新全, 等. 假俭草种群变异与生态特性的研究[J]. 北京林业大学学报, 2002, 24(4):97-101. doi: 10.3321/j.issn:1000-1522.2002.04.022

    [27] 张龙进, 李桂双, 白成科, 等. 山茱萸种质资源数量性状评价及相关性分析[J]. 植物遗传资源学报, 2012, 13(4):655-659. doi: 10.3969/j.issn.1672-1810.2012.04.025

    [28] 郁万文, 韩 晋, 曹福亮, 等. 银杏雌株高黄酮种质定向筛选[J]. 中国野生植物资源, 2020, 39(2):19-26. doi: 10.3969/j.issn.1006-9690.2020.02.004

    [29] 闫星蓉, 王 娟, 宫源奇, 等. 文冠果果实表型性状和种仁功能成分的品系差异[J]. 经济林研究, 2020, 38(3):145-152.

    [30] 虞晓芬, 傅 玳. 多指标综合评价方法综述[J]. 统计与决策, 2004(11):119-121. doi: 10.3969/j.issn.1002-6487.2004.11.066

    [31] 王治会, 彭 华, 岳翠男, 等. 江西茶树资源功能成分综合评价与种质优选[J]. 河南农业科学, 2020, 49(8):54-62.

    [32] 吴可心, 吴 斌, 彭晓曦, 等. 不同产地杜仲叶片活性成分及杜仲胶质量分数差异[J]. 东北林业大学学报, 2019, 47(10):40-43,74. doi: 10.3969/j.issn.1000-5382.2019.10.009

    [33] 于国栋, 夏米蕊, 杨新成, 等. 银杏古树不同产地和家系子代生长及叶片药用成分含量的差异[J]. 北方园艺, 2018(11):144-150.

    [34] 楚秀丽, 杨万霞, 方升佐, 等. 不同种源青钱柳叶黄酮类物质含量的动态变化[J]. 北京林业大学学报, 2011, 33(2):130-133.

    [35] 黄 铖, 马玉华, 杨少博, 等. 叶用青钱柳优树的选择及其无性系区域化测定试验[J]. 安徽农业大学学报, 2020, 47(6):938-942.

    [36] 胡文杰, 庞宏东, 郑勇奇. 9年生枫香的遗传变异和优良家系单株选择[J]. 热带亚热带植物学报, 2018, 26(5):506-514. doi: 10.11926/jtsb.3855

    [37]

    Que Q M, Li C M, Li B Y, et al. Multi-level genetic variation and selection strategy of Neolamarckia cadamba in successive years[J]. Forests, 2021, 12(11): 1455. doi: 10.3390/f12111455
    [38]

    Li Y Q, Kong D X, Fu Y, et al. The effect of developmental and environmental factors on secondary metabolites in medicinal plants[J]. Plan Physiology and Biochemistry, 2020, 148: 80-89. doi: 10.1016/j.plaphy.2020.01.006
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1) / Tables(8)

Article views(3267) PDF downloads(92) Cited by()

Proportional views

Evaluation on Germplasm Resources of Cyclocarya paliurus and Its Oriented Selection of Superior Families and Trees

    Corresponding author: FANG Sheng-zuo, fangsz@njfu.edu.cn
  • 1. College of Forestry, Nanjing Forestry University, Nanjing 210037, Jiangsu,China
  • 2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu,China

Abstract:  Objective In order to select superior families and individual plants which is suitable for planting in Nanjing and surrounding areas for providing a theoretical basis for the oriented silviculture of Cyclocarya paliurus plantations. Method The 3.5-year old germplasm resources of C. paliurus trees were comprehensively evaluated in this study. The 31 families of C. paliurus trees were used as test materials to determine the traits of growth and the leaf contents of total flavonoid, triterpenoid, and polyphenol. And cluster analysis and entropy method were used to screen superior families and individual trees based on the variations in traits. Results Significant variations were observed in tree height, diameter at the base, and the leaf contents of total flavonoid, triterpenoid and polyphenol among different families. Hierarchical cluster analysis showed that the 31 families of C. paliurus were classified into four distinct groups. The C. paliurus families in cluster 1, cluster 2 and cluster 3 could be recommended as the families for high accumulation of total triterpenoid, total polyphenol, and total flavonoid, respectively. In contrast, the families in cluster 4 showed poor performance in all measured metabolites. Seven superior families (GXJZS7#、GZSQ12#、GXLS26#、HNYS2#、AHQLF13#、SCMC31# and GXJZS1#) of C. paliurus were preliminary selected for the accumulation of target secondary metabolites using entropy method. Within the seven superior families, all the trees were further assessed, and eleven superior individuals were selected. Conclusion There are significant variations in growth and leaf secondary metabolites among the tested germplasm resources, showing a great potential for the selecting and breeding of C. paliurus. Based on the comprehensive assessment, seven superior families and eleven excellent individuals are selected for further test and future application.

  • 青钱柳(Cyclocarya paliurus (Batal.) Iljinskaja)因其独特的甜味而被称为“甜茶树”,主要分布在我国的亚热带地区[1-2]。在我国,青钱柳叶主要用作中药配方以及保健食品原料[3]。药理研究表明,青钱柳叶提取物具有降“三高”、抗氧化、抗菌等功效[4],主要归因于其数量众多的生物活性物质如黄酮类、三萜类、多酚类等化合物的协同作用[5-7]。但青钱柳天然林资源稀少,多零星分布在深山老林和自然保护区中,加之环境的破坏以及人为过度采伐利用,严重影响了青钱柳种质资源的发掘与利用。

    植物在进化过程中,由于基因突变、自然选择以及生态隔离等原因,分化产生了种内有差别的地理生态种源和家系,导致生长和次生代谢物质的合成存在较大差异[8]。如不同厚朴(Magnolia officinalis Rehd. et Wilson)种源间厚朴酚类物质总量及其单体均存在显著差异[9]。鞠建明等[10]指出,银杏(Ginkgo biloba L.)半同胞家系种质资源的总黄酮醇苷含量、总内酯含量、总银杏酸含量均具遗传差异。目前,对青钱柳的研究发现,青钱柳黄酮类化合物、三萜类化合物以及多酚类化合物含量在不同种源和家系间差异显著[11-13]。此外,青钱柳不同单株间的次生代谢物质含量也存在较大差异[14]。青钱柳种质资源丰富的遗传变异,是其良种选育、资源开发利用的基础;但目前青钱柳良种选育的研究大多集中在种源和家系水平,且涉及的种源和家系较少[15],关于家系-单株配合选择的研究鲜有报道。

    因此,本研究以前期收集的青钱柳种质资源为材料,通过分析研究青钱柳生长性状和次生代谢物质含量在参试家系间的差异,初选出适合江苏南京及周边环境相似地区的优良家系和单株,为青钱柳良种选育提供理论依据。

    • 参试青钱柳种源及家系的种子均于2014年10月从天然林种群中的优势木和亚优势木上采集。对采集的种子进行层积催芽处理后,于2016年春季将发芽后的芽苗移植于8 cm × 11 cm的无纺布容器中育苗。经苗期初步筛选后,于2017年4月移栽至江苏省青钱柳种质资源库中定植,每个家系的定植株数为5~30株,种植株行距为2 m × 3 m。由于资源库的立地条件相对较为一致,种植时按家系进行配置。根据前期田间调查,本研究共选取青钱柳资源库中31个家系(目前保存株数>5株)作为研究材料,在2020年10—11月对31个家系的所有单株进行相关生长指标的测定,并对每个家系内树高和地径均高于31个家系平均值的单株叶片进行次生代谢物含量的测定(共176株),具体家系原产地信息见表1

      种源
      Provenance
      家系
      Family
      取样株数
      Sampling Number
      经度(E)
      Longitude
      纬度(N)
      Latitude
      海拔/m
      Altitude
      安徽旌德(AHJD)1#5118°27′30°13′550.0
      安徽清凉峰(AHQLF)4#3118°53′30°8′680.0
      8#7732.0
      11#6820.0
      13#3840.0
      广西龙胜(GXLS)26#4109°54′25°38′598.0
      广西金钟山(GXJZS)1#4110°9′24°58′1 708.0
      7#41 698.0
      贵州石阡(GZSQ)9#12107°52′27°31′1 230.0
      12#91 236.0
      贵州印江(GZYJ)7#3108°31′27°45′1 231.0
      湖北五峰(HBWF)1#4110°34′30°19′957.9
      7#3963.6
      10#4963.3
      15#7988.0
      湖北鹤峰(HBHF)1#3110°28′29°52′1 115.8
      湖南永顺(HNYS)2#8110°19′28°52′620.8
      3#4670.8
      7#4667.0
      江西九江(JXJJ)1#5114°33′29°2′854.0
      四川沐川(SCMC)22#4103°47′20°2′1 176.0
      31#51 230.0
      浙江凤阳山(ZJFYS)1#3119°10′27°53′1 216.0
      2#61 210.0
      4#61 200.0
      浙江龙王山(ZJLWS)3#6119°26′30°25′567.0
      浙江梅坞岭(ZJMWL)4#8120°49′29°56′510.0
      浙江商量岗(ZJSLG)9#6121°12′29°43′740.0
      浙江天童(ZJTT)2#12120°45′29°48′275.0
      3#15290.0
      浙江文成(ZJWC)2#3119°50′27°52′944.0

      Table 1.  Geographic location information for tested Cyclocarya paliurus provenances and families

      江苏省青钱柳种质资源库位于江苏省南京市溧水区南京林业大学白马教学科研基地(31°35′ N,119°09′ E),属亚热带季风区,四季分明,光照充足,年均气温15.4 ℃,年降水量1 087.4 mm,且主要集中在5—8月。土壤为黄棕壤,0~40 cm土壤的密度为1.30 g·cm−3左右,pH值5.6左右,土壤肥力较低。

    • 分别用测高杆和胸径尺测定31个家系所有单株的树高和地径,树高精确到0.01 m、地径精确到0.01 cm。以单株的树高和地径为基础,计算同一家系的平均值和标准偏差。

    • 对每个取样单株从树冠中部的东南西北4个方向随机采10片健康功能叶,共采集3份用于次生代谢物含量测定。各家系的次生代谢物含量也是以单株含量为基础,计算其平均值和标准偏差。青钱柳次生代谢物的提取参照林源等[16]的方法。总黄酮含量的测定参照Zhou等[4]的方法,以芦丁标准品为对照品绘制标准曲线。总三萜含量的测定参照Fan等[17]的方法,以齐墩果酸标准品为对照品绘制标准曲线。总多酚含量的测定参照Xie等[18]的方法,以没食子酸标准品为对照品绘制标准曲线。

    • 使用熵权法[19]筛选优良家系和单株,将家系/单株的指标值进行标准化,利用指标权重计算各家系/单株综合得分值,公式如下:

      式(1)~(2)中:$ {W}_{j} $为指标权重值,$ m $为指标数,$ {D}_{j} $为指标差异系数;$ D $为综合得分$ n $为样本数$ {H}_{ij} $为第$ j $指标第$ i $样本标准化后的值。

      优良家系以综合得分值位于前20%为选择标准;优良单株以综合得分值位于前30%为选择标准。

    • 用Excel 2010和SPSS 26.0软件进行数据统计与分析。方差分析模型为:

      yij=μ + Fj + Sk + eij

      式中:yij为第i家系的第j个单株的观测值,μ为总体均值,Fj为家系效应,Sk为单株效应,eij为随机误差。

      用Duncan’s多重比较分析家系之间的差异;采用变异系数(CV=(标准偏差/ 平均值) × 100% )表示各性状在家系间的离散程度,反映生长和主要次生代谢产物的变异情况[20];在对各指标数据进行无量纲化处理基础上,采用欧氏距离ward法进行系统聚类分析[21]

    2.   结果与分析
    • 青钱柳31个参试家系的生长状况和叶主要次生代谢物质含量见表2。3.5年生时,树高和地径的变化范围分别为2.12~4.25 m和4.41~8.72 cm,平均值分别为3.15 m和6.34 cm,其中, GZSQ12#家系的树高和地径均显著高于HBHF1#、ZJFYS4#和ZJMWL4#家系(p<0.05)。

      家系
      Family
      树高
      Tree height/m
      地径
      Basal diameter/cm
      总黄酮含量
      Total flavonoid content/
      (mg g−1)
      总三萜含量
      Total triterpenoid content/
      (mg g−1)
      总多酚含量
      Total polyphenol content/
      (mg g−1)
      AHJD1#3.84±0.23 a-c7.22±0.39 a-d28.19±2.86 c-f38.45±0.99 d-f17.15±2.46 a-e
      AHQLF4#2.67±0.16 hi5.37±0.37 d-f41.04±3.14 ab51.23±2.72 b-f24.49±0.09 a-d
      AHQLF8#2.46±0.20 hi5.47±0.36 d-f23.38±1.25 d-f46.23±2.42 b-g14.54±1.70 b-e
      AHQLF11#3.77±0.22 a-d8.72±0.94 a26.69±2.66 c-f34.51±5.25 g6.62±0.85 e
      AHQLF13#3.20±0.28 b-h7.13±0.57 a-d34.01±1.58 b-e54.03±1.57 a-d21.83±1.45 a-d
      GXLS26#4.19±0.17 a8.03±0.77 a-c35.44±3.10 b-d40.88±3.66 c-g25.57±1.18 a-c
      GXJZS1#2.69±0.32 f-i5.35±0.43 d-f41.40±5.66 ab56.71±5.85 a-c25.36±6.90 a-c
      GXJZS7#3.34±0.04 a-h6.58±0.15 a-f47.10±4.53 a60.41±2.42 ab19.83±2.23 a-d
      GZSQ9#3.78±0.20 a-d6.64±0.44 a-f24.68±1.43 d-f50.28±2.33 b-g27.78±2.30 a
      GZSQ12#4.25±0.20 a7.17±0.49 a-d23.90±1.48 d-f67.51±3.76 a25.61±1.59 a-c
      GZYJ7#3.60±0.73 a-f7.23±1.97 a-d25.38±6.38 d-f53.82±10.25 a-e19.55±2.42 a-d
      HBHF1#2.12±0.49 i4.50±0.65 ef21.67±0.94 f37.57±3.60 d-g22.33±2.14 a-d
      HBWF1#2.90±0.30 c-i6.58±0.64 a-f41.47±3.09 ab46.98±3.54 b-g23.44±2.64 a-d
      HBWF7#3.49±0.25 a-g6.97±0.49 a-e26.55±4.47 d-f40.18±3.48 d-g16.72±3.63 a-e
      HBWF10#2.87±0.36 c-i5.90±0.76 c-f30.19±3.98 b-f41.24±2.23 c-g16.03±0.97 a-e
      HBWF15#3.19±0.41 b-h6.87±1.01 a-f31.06±1.76 b-f50.52±2.08 b-g22.18±0.85 a-d
      HNYS2#3.91±0.18 a-b8.38±0.75 ab20.62±2.03 f67.05±2.85 a12.12±1.00 de
      HNYS3#2.94±0.22 b-i5.65±0.39 c-f26.83±3.30 c-f66.87±3.47 a17.05±3.74 a-e
      HNYS7#2.73±0.38 e-i5.80±0.58 c-f27.77±3.60 c-f49.48±8.84 b-g21.01±3.76 a-d
      JXJJ1#3.68±0.19 a-e6.56±0.30 a-f25.79±5.27 d-f53.01±1.51 a-e16.94±1.33 a-e
      SCMC22#3.09±0.10 b-i6.08±0.31 b-f38.60±5.52 a-c50.83±5.65 b-g24.67±4.59 a-d
      SCMC31#2.61±0.32 f-i5.40±0.74 d-f47.35±6.78 a49.43±3.91 b-g26.24±3.84 ab
      ZJFYS1#2.83±0.49 d-i4.93±0.89 d-f35.51±9.20 b-d45.79±4.42 b-g12.50±6.68 de
      ZJFYS2#2.66±0.36 f-i5.55±0.62 c-f31.68±3.71 b-f37.32±7.99 e-g13.27±2.96 c-e
      ZJFYS4#2.50±0.18 g-i4.52±0.44 ef26.35±5.27 d-f42.62±3.44 c-g12.26±2.34 de
      ZJLWS3#3.21±0.26 b-h6.85±0.84 a-f28.68±1.18 c-f38.85±2.13 d-g20.38±1.29 a-d
      ZJMWL4#2.74±0.18 e-i4.41±0.42 f31.16±2.06 b-f43.67±3.86 c-g28.25±2.61 a
      ZJSLG9#3.09±0.28 b-i7.15±0.78 a-d22.24±1.81 ef42.31±1.53 c-g22.13±3.46 a-d
      ZJTT2#2.98±0.12 b-i5.94±0.40 b-f40.58±1.54 ab44.47±3.88 b-g17.37±2.58 a-e
      ZJTT3#2.93±0.16 b-i5.57±0.33 c-f28.33±2.35 c-f46.33±3.68 b-g27.03±4.08 ab
      ZJWC2#3.44±0.16 a-h7.97±1.11 a-c24.91±0.87 d-f35.31±2.81 fg25.49±2.15 a-c
      p<0.05<0.05<0.05<0.05<0.05
      平均值 Average3.156.3430.9247.8720.18
      表型变异系数CV/%16.9117.8524.1218.9227.18
      注:不同小写字母为青钱柳家系在 0.05 水平上差异显著
      Note: Different letters mean significant differences among families at 0.05 level

      Table 2.  Variation in growth and leaf secondary metabolite content among Cyclocarya paliurus families at 3.5 years of planting

      参试家系间的总黄酮、总三萜和总多酚含量的变异范围分别为20.62~47.35、34.51~67.51、6.62~28.25 mg·g−1,总三萜在青钱柳叶主要次生代谢物质中含量相对较高。与31个家系的平均值相比,SCMC31#、GXJZS7#、HBWF1#、GXJZS1#、AHQLF4#、ZJTT2#、ZJFYS1#、GXLS26#和AHQLF13#的总黄酮含量分别比平均值(30.92 mg·g−1)高53.14%、52.33%、34.12%、33.89%、32.73%、31.24%、14.84%、 14.62%和9.99%, GZSQ12#、HNYS2#、HNYS3#、GXJZS7#、GXJZS1# AHQLF13#和GZYJ7#的总三萜含量分别比平均值(47.87 mg·g−1)高41.03%、40.07%、39.69%、 26.20%、18.47%、12.87%和12.43%。总多酚含量最高的家系为ZJMWL4#,其含量为28.25 mg·g−1

      定植3.5年时,31个参试青钱柳家系2个生长性状和叶3个次生代谢物质含量的表型变异系数的变化范围为16.91%~27.18%,为青钱柳优良家系的筛选提供了极大的空间,其中,叶总多酚(27.18%)、总黄酮(24.12%)的含量变异较大,在参试家系间存在广泛变异,而叶总三萜含量(18.92%)、树高(16.91%)、地径(17.85%)变异系数相对较低,表明其在参试家系间性状较为稳定。

    • 根据生长和主要次生代谢物含量对31个参试家系进行聚类分析,在欧氏距离为7时,将31个青钱柳家系聚为4类(图1),其中,第1 类(包含8个家系)为叶片总三萜含量较高家系,总三萜含量均值为57.89 mg·g−1。第2类(包含7个家系)为叶片总多酚含量较高家系,其含量均值为19.15 mg·g−1。第3类(包含6个家系)为叶片总黄酮含量较高家系,总黄酮含量变化范围为38.60~47.35 mg·g−1。第4类(包含10个家系)为叶次生代谢物综合含量和生长均较差家系,该类群叶次生代谢含量和生长均值低于参试家系平均值。

      Figure 1.  Cluster analysis dendrogram of the 31 C. paliurus families at 3.5 years of planting based on tree growth and leaf secondary metabolite content at 6 in the Euclidean distance

    • 采用多指标选择法进行优良家系筛选,以定植后3.5年生的树高、地径及叶主要次生代谢物质含量为指标,采用熵权法计算青钱柳家系各指标权重(表3)。根据综合得分值对青钱柳31个家系进行排序(表4),按照20%的入选率[22],筛选出GXJZS7#、GZSQ12#、GXLS26#、HNYS2#、AHQLF13#、SCMC31#和GXJZS1#共 7个家系作为南京及周边环境相似地区的优良家系。结合图1发现,GZSQ12#、HNYS2#和AHQLF13#属于类群1,生长和叶总三萜含量较高,GXLS26#属于类群2,具有较高的总多酚含量,GXJZS7#、SCMC31#和GXJZS1#属于类群3,其叶总黄酮含量较高。

      指标

      Index
      指标信息熵

      Ej
      指标差异性系数

      Dj
      指标熵权

      Wj
      树高
      Tree height
      0.959 00.041 00.152 2
      地径
      Basal diameter
      0.942 90.057 10.212 3
      总黄酮
      Total flavonoid
      0.925 20.074 80.278 1
      总三萜
      Total triterpenoid
      0.932 30.067 70.251 5
      总多酚
      Total polyphenol
      0.971 50.028 50.105 8

      Table 3.  Multi-trait entropy weights of comprehensive evaluation for Cyclocaryapaliurus at 3.5 years of planting

      家系
      Family
      各指标得分 Score of each index综合得分
      Comprehensive score
      排名
      Rank
      树高
      Tree height
      地径
      Basal diameter
      总黄酮含量
      Total flavonoid content
      总三萜含量
      Total triterpenoid content
      总多酚含量
      Total polyphenol content
      GXJZS7#0.087 30.106 70.275 50.197 70.064 60.731 81
      GZSQ12#0.152 30.135 90.034 10.251 80.092 90.667 02
      GXLS26#0.147 60.178 20.154 30.048 80.092 70.621 63
      HNYS2#0.127 90.195 50.000 00.248 30.026 90.598 74
      AHQLF13#0.077 10.134 30.139 30.149 00.074 40.574 15
      SCMC31#0.035 00.048 70.278 10.114 00.096 00.571 86
      GXJZS1#0.040 30.046 30.216 20.169 50.091 70.564 07
      AHQLF8#0.024 30.052 30.028 70.089 60.038 70.233 629
      ZJFYS4#0.027 00.005 20.059 70.062 10.027 60.181 630
      HBHF1#0.000 00.004 30.011 00.023 60.076 90.115 831

      Table 4.  Comprehensive scores and ranking of the Cyclocarya paliurus families at 3.5 years of planting

      青钱柳优良家系的性状表现见表5。入选的7个优良家系的树高和地径平均值分别为3.46 m和6.86 cm,分别高于参试家系总体均值的9.84%和8.20%;优良家系叶总黄酮、总三萜和总多酚含量均值分别为35.69、56.57、22.37 mg·g−1,较参试家系总体均值的分别提高了15.43%、18.17%和10.85%。

      家系
      Family
      树高
      Tree height/m
      地径
      Basal diameter/cm
      总黄酮含量
      Total flavonoid
      content/(mg·g−1)
      总三萜含量
      Total triterpenoid
      content/(mg·g−1)
      总多酚含量
      Total polyphenol
      content/(mg·g−1)
      GXJZS7#3.346.5847.1060.4119.83
      GZSQ12#4.257.1723.9067.5125.61
      GXLS26#4.198.0335.4440.8825.57
      HNYS2#3.918.3820.6267.0512.12
      AHQLF13#3.207.1334.0154.0321.83
      SCMC31#2.615.4047.3549.4326.24
      GXJZS1#2.695.3541.4056.7125.36
      优良家系均值3.466.8635.6956.5722.37
      参试家系均值3.156.3430.9247.8720.18

      Table 5.  Characters performance for the excellent Cyclocarya paliurus families at 3.5 years of planting

    • 在优良家系选择的基础上进一步开展优良单株选择,筛选出的7个优良家系(GXJZS7#、GZSQ12#、GXLS26#、HNYS2#、AHQLF13#、SCMC31#和GXJZS1#)中共包含37个单株,计算各单株的综合得分值并排序,结果(表6)表明:GZSQ12#-4单株综合得分最高,SCMC31#-3单株次之。以综合得分值位于前30%为入选标准,共筛选出11个优良单株(GZSQ12#-4、SCMC31#-3、HNYS2#-3、GZSQ12#-1、GZSQ12#-5、GZSQ12#-8、GXJZS7#-2、HNYS2#-4、GXJZS1#-2、GXJZS7#-4和GZSQ12#-9),占176株总参试单株的6.25%,其中,GZSQ12#家系内的单株生长和叶次生代谢物含量总体表现较好,而HNYS2#和SCMC31#家系单株表现相对较差。

      单株
      individuals
      各指标得分 Score of each index综合得分
      Comprehensive score
      排名
      Rank
      树高
      Tree height
      地径
      Basal diameter
      总黄酮含量
      Total flavonoid content
      总三萜含量
      Total triterpenoid content
      总多酚含量
      Total polyphenol content
      GZSQ12#-40.152 30.122 10.090 70.234 30.065 90.665 31
      SCMC31#-30.065 80.073 20.278 10.153 80.082 20.653 22
      HNYS2#-30.126 80.212 40.047 50.243 10.012 30.642 13
      GZSQ12#-10.149 20.112 30.052 20.224 30.095 60.633 64
      GZSQ12#-50.137 30.097 70.066 00.251 60.066 00.618 65
      GZSQ12#-80.136 00.139 10.046 30.222 20.061 90.605 66
      GXJZS7#-20.079 90.083 00.206 30.161 10.054 80.585 17
      HNYS2#-40.110 10.156 20.082 50.179 60.026 40.554 98
      GXJZS1#-20.075 50.068 90.101 20.266 80.010 20.522 69
      GXJZS7#-40.078 60.092 80.218 40.109 90.021 50.521 210
      GZSQ12#-90.122 90.156 20.052 80.112 50.070 20.514 711
      HNYS2#-70.088 20.095 20.004 20.165 80.000 00.353 435
      HNYS2#-80.057 10.031 80.035 90.203 30.010 90.339 036
      SCMC31#-10.052 70.063 50.141 20.038 30.036 50.332 337

      Table 6.  Comprehensive scores and ranking of the Cyclocarya paliurus individuals within superior families after 3.5 years of planting

      表7可知:筛选出的优良单株平均树高、地径、叶总黄酮、总三萜和总多酚含量分别为4.06 m、7.95 cm、35.85 mg·g−1、69.42 mg·g−1和23.00 mg·g−1,分别比参试家系总体均值高28.89%、25.39%、15.94%、45.02%和13.97%,提高了选择效果,筛选出的优良单株可用于青钱柳优良无性系的繁殖利用。

      单株
      Individual
      树高
      Tree height/m
      地径
      Basal diameter/cm
      总黄酮含量
      Total flavonoid
      content/(mg·g−1)
      总三萜含量
      Total triterpenoid
      content/(mg·g−1)
      总多酚含量
      Total polyphenol
      content/(mg·g−1)
      GZSQ12#-44.978.1031.6078.4127.01
      SCMC31#-33.006.1067.4862.1131.72
      HNYS2#-34.3911.8023.3180.2011.49
      GZSQ12#-14.907.7024.2176.3935.60
      GZSQ12#-54.637.1026.8781.9127.04
      GZSQ12#-84.608.8023.0975.9525.85
      GXJZS7#-23.326.5053.7363.5823.80
      HNYS2#-44.019.5030.0267.3415.57
      GXJZS1#-23.225.5033.6170.7112.53
      GXJZS7#-43.296.9056.0553.2214.16
      GZSQ12#-94.309.5024.3353.7528.26
      优良单株均值4.067.9535.8569.4223.00
      参试家系均值3.156.3430.9247.8720.18

      Table 7.  Characters performance for the excellent Cyclocarya paliurus individuals at 3.5 years of planting

    3.   讨论
    • 表型性状是植物对外界环境条件的长期适应后形成稳定可遗传的性状,表型性状的变异是遗传变异的外在表现。青钱柳分布区广泛,北至河南南召,南至广西百色,导致了青钱柳种内存在较大表型变异。以往的研究发现,青钱柳不同种源间生长性状差异显著,并且黄酮类化合物的含量呈现经纬度双向变异[23-24]。Sun等[25]认为,青钱柳黄酮和三萜类化合物在家系水平存在丰富变异,这与本研究结果一致。一般情况下,变异系数大于10%,则认为种质间存在较大差异[26-27],而本研究通过对青钱柳生长和主要次生代谢物质的性状变异分析发现,青钱柳的生长性状和次生代谢物含量存在显著变异,这与银杏[28]、文冠果 (Xanthoceras sorbifolium Bunge)[29]等药用树种的研究结果一致。

      多指标选择是利用多个指标进行综合评价分析,并筛选得到优良种质[30],如王治会等[31]利用总儿茶素、总游离氨基酸、咖啡碱等8项指标,筛选出5份功能成分含量高的茶树(Camellia sinensis (L.) O. Ktze.)种质资源;吴可心等[32]通过杜仲绿原酸、桃叶珊瑚苷、总黄酮、茶多酚等活性成分指标进行药用优良杜仲(Eucommia ulmoides Oliver)的筛选。此外,为获得最大药用保健价值和经济价值,需结合其单株产量进行综合考量。于国栋等[33]将生长指标和药用成分含量相结合,对优良叶用银杏家系进行了综合评价。然而,在青钱柳优树筛选的工作中,往往只考虑了叶内单一的药用成分含量,鲜有将生长性状纳入评价体系[24, 34-35]。因此,本研究以树高、地径2个生长性状以及总黄酮、总三萜和总多酚3个药用品质性状作为评价指标,综合考虑生长和目标次生代谢物质含量,采用熵权法综合评价和筛选青钱柳优良家系和单株。

      在良种选育工作中,优良家系-单株的配合选择与遗传改良能够充分利用各层次的遗传变异,获得理想遗传增益和丰富育种材料,是获得最大遗传增益的有效途径[36]。如Que等[37]通过对黄梁木(Neolamarckia cadamba (Roxb.) Bosser)不同选择水平所获得的遗传增益进行比较,认为优良家系-单株的选育策略可以获得较大的遗传增益。本研究初步筛选出的7个优良家系(GXJZS7#、GZSQ12#、GXLS26#、HNYS2#、AHQLF13#、SCMC31#和GXJZS1#)多来自中西部地区种源,这说明相较于其他地区种源,来自这些地区种源的青钱柳家系较适合在南京地区推广种植。同时,本研究在优良家系筛选的基础上,还进行优良家系内优良单株的评价,共筛选出11个优良单株,占总参试单株(176株)的6.25%,且这11个单株各指标的增幅在13.97%~45.02%。目前,青钱柳嫁接技术和嫩枝扦插技术已有突破并趋于成熟,这为优良单株的无性系化利用以及区域化推广提供了技术保障。

      为了进一步比较优良家系-单株配合选择与从单株直接筛选优良单株2种方法的差异,本研究还采用熵权法直接对176株参试单株进行了综合评价(表8),所筛选出的11个单株(按6.25%入选率)中有8个单株与优良家系-单株配合选择结果一致,其余3个优良单株与优良家系-单株配合选择结果不一致,说明优良家系-单株配合选择方法可能存在遗漏优良单株的情况,在将来的选育工作中建议可直接从单株水平进行优良单株的筛选评价。

      单株
      individuals
      各指标得分 Score of each index综合得分
      Comprehensive score
      排名
      Rank
      树高
      Tree height
      地径
      Basal diameter
      总黄酮含量
      Total flavonoid content
      总三萜含量
      Total triterpenoid content
      总多酚含量
      Total polyphenol content
      GZSQ12#-40.150 10.118 60.090 70.303 20.030 10.692 81
      SCMC31#-30.066 10.080 40.278 10.226 20.036 60.687 42
      HNYS2#-30.125 40.189 40.047 50.311 70.008 70.682 63
      GZSQ12#-50.135 60.099 50.066 00.319 70.030 20.651 14
      GZSQ12#-10.147 10.111 00.052 20.293 70.042 00.645 95
      GXJZS7#-20.079 80.088 00.206 30.233 10.025 70.632 96
      GZSQ12#-80.134 40.132 00.046 30.291 60.028 50.632 87
      ZJFYS1#-40.100 20.091 80.206 80.190 20.028 50.617 78
      HBWF15#-20.152 30.179 80.060 20.204 60.017 50.614 49
      GZSQ9#-50.137 80.135 80.034 20.250 00.055 00.612 810
      HNYS2#-40.109 20.145 40.082 50.250 90.014 30.602 311
      GXJZS7#-40.078 50.095 70.218 40.184 20.012 40.589 213
      GZSQ12#-90.121 60.145 40.052 80.186 70.031 80.538 322
      GXJZS1#-20.075 50.068 90.101 20.266 80.010 20.522 629
      ZJTT2#-30.054 60.061 20.094 7-0.030 80.016 40.196 2174
      HBHF1#-20.000 00.037 30.040 00.076 30.025 00.178 5175
      ZJFYS2#-30.006 40.053 60.052 7-0.039 50.004 20.077 4176

      Table 8.  Comprehensive scores and ranking of the Cyclocarya paliurus individuals after 3.5 years of planting

      基于家系、单株等不同“基因型”划分依据所进行的种质资源选择,为青钱柳选育工作奠定了基础。然而,植物的生长和次生代谢物含量除了受基因型的控制外,还受到环境因素的影响[38],二者的交互作用使得表型性状的选择更加复杂。本研究仅在单一试验点进行1 a的观测,并未对青钱柳生长和主要次生代谢物质在不同环境条件下的适应性和稳定性以及年度间稳定性进行评价。因此,为达到更好的选择效果,应进一步开展初选家系和单株的多点种源试验并进行长期观测研究。

    4.   结论
    • 青钱柳的生长性状和叶主要次生代谢物含量在31个参试家系之间存在显著差异,为青钱柳良种选育提供了丰富的资源。通过优良家系-单株配合选择,共筛选出7个优良家系(GXJZS7#、GZSQ12#、GXLS26#、HNYS2#、AHQLF13#、SCMC31#和GXJZS1#)和11个优良单株(GZSQ12#-4、SCMC31#-3、HNYS2#-3、GZSQ12#-1、GZSQ12#-5、GZSQ12#-8、GXJZS7#-2、HNYS2#-4、GXJZS1#-2、GXJZS7#-4和GZSQ12#-9),优良家系和优良单株的生长性状和主要次生代谢物含量较参试家系总体均值的增幅分别为8.20%~18.17%和13.97%~45.02%。基于优良家系-单株配合选择筛选出的7个优良家系和11株优良单株可用于青钱柳进一步定向选育研究和应用。

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return