• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 36 Issue 1
Feb.  2023
Article Contents
Turn off MathJax

Citation:

Genetic Analysis of the Fruit and Oil Related Traits on Hybrid Offspring of Nested Mating of Camellia oleifera

  • Corresponding author: LIN Ping, linping80@126.com
  • Received Date: 2022-07-20
    Accepted Date: 2022-10-07
  • Objective To Select the optimal parent and parental combination for improving breeding efficiency and maximize genetic gain in oil-tea hybrid breeding. Method In this study, 11 fruit and oil related traits were detected in the intraspecific and interspecific hybrid progeny in nest design, including weight of single fruit, seed rate of fresh fruit, kernel rate of dry seeds, oil content of kernel and seven kinds of fatty acid content in the oil. The general combining ability (GCA) of female parent and special combining ability (SCA) of hybridized combination were analyzed. The genetic control modes for 11 traits were analyzed. Result There were highly significant differences in 11 traits among 12 families. These differences mainly caused by paternal effects at the level of P < 0.01, and only the differences of stearic acid and linoleic acid content were affected by maternal effects at the level of P < 0.05. The GCA and SCA of the parents were comprehensively analyzed. The intraspecific hybridization ‘Changlin No.4’ × ‘Changlin No.23’ showed better combining ability in weight of single fruit, seed rate of fresh fruit, kernel rate of dry seeds, oil content of kernel and oleic acid content in oil. The interspecific hybridization of Camellia oleifera and C. meiocarpa ‘Changlin No. 53’ × ‘Xiao No.3’ had a better performance on weight of single fruit, palmitic acid, linoleic acid and linolenic acid content. The cross of ‘Changlin No. 53’ × ‘Xiao No.2’ had advantages in seed rate of fresh fruit, kernel rate of dry seeds, oil content of kernel and oleic acid content. The analysis of genetic effect showed that stearic acid, oleic acid and linoleic acid content were mainly controlled by additive genetic effect, while the other eight traits were mainly influenced by non-additive genetic effect. The heritability of 11 economic traits of per plant was greater than that of families. The breeding strategy of selecting excellent individual plants within the full-sib families should be adopted in the cross breeding of C. oleifera. Conclusion The economic traits of C. oleifera are mainly controlled by inheritance, and less affected by environment. Weight of single fruit, seed rate of fresh fruit, kernel rate of dry seeds, oil content of kernel, palmitic acid, palmitoleic acid, linolenic acid and cis-11-eicosenoic acid content were mainly controlled by non-additive gene effect, and the influence of additive gene effect is relatively low. In interspecific hybridization, SCA evaluation of hybridized combination should be given priority. In this study, we explored the parental allocation and genetic effects of interspecific hybridization between C. oleifera and C. meiocarpa, which laid a theoretical foundation for guiding interspecific hybridization breeding of C.oleifera.
  • 加载中
  • [1] 姚小华, 王开良, 任华东, 等. 油茶资源与科学利用研究[M]. 北京: 科学出版社, 2012.

    [2] 姚小华, 林 萍, 王开良. 与油茶种仁油中亚麻酸含量相关的关键SNP分子标记及其应用: 10442342.4[P]: 2020-07-28.

    [3]

    ZHANG D, JIN Q, XUE Y, et al. Nutritional value and adulteration identification of oil-tea camellia seed oil[J]. China Oils and Fats, 2013, 38(8): 47-50.
    [4]

    CHEN D, FENG Z, ZHANG C. Comparison of fatty acid compositions of tea seed oil and oil-tea camellia seed oil[J]. China Oils and Fats, 2011, 36(3): 69-71.
    [5] 国家林业和草原局对“推进油茶产业高质量发展 保障国家食用油料安全的建议”复文[J]. 中国林业产业, 2021, 18(4): 24-25.

    [6] 陈丰林, 谢 海, 游昌乔, 等. 我国油茶资源研究与开发利用现状及展望[J]. 生命科学研究, 2021, 25(5):425-431.

    [7] 刘跃祥. 木本油料产业的国家粮油安全战略[J]. 中国林业产业, 2014, 11(1):76-78.

    [8]

    CHOUDHARY P, SINGH N B, VERMA A. Genetic analysis in intra- and inter-specific crosses of tree willows[J]. Indian Journal of Genetics & Plant Breeding, 2015, 75(3): 372-378.
    [9]

    ZHAO N, MIAO Y, XUE D, et al. Genetic analysis of main traits of cross combinations after 6 × 6 diallel crossing in Faba Bean[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 45-54.
    [10]

    WU H X, HALLINGBCK H R, LEOPOLDO S. Performance of seven tree breeding strategies under conditions of inbreeding depression[J]. G3:Genes Genomes Genetics, 2019, 6(3): 529-540.
    [11] 林 萍, 姚小华, 滕建华, 等. 油茶5 × 5全双列杂交子代幼林生长性状的配合力分析[J]. 中南林业科技大学学报, 2016, 36(5):26-32.

    [12] 吴 兵, 庞贞武, 沈 云, 等. 桉树巢式交配设计子代配合力效应分析[J]. 安徽农业科学, 2013, 41(28):11410-11413.

    [13] 林 萍, 王开良, 姚小华, 等. 普通油茶杂交子代幼林经济性状的遗传分析[J]. 中南林业科技大学学报, 2017, 37(12):31-38.

    [14] 林 萍, 姚小华, 滕建华, 等. 油茶杂交子代幼林生长性状的遗传分析[J]. 经济林研究, 2016, 34(1):6-11. doi: 10.14067/j.cnki.1003-8981.2016.01.002

    [15] 刘青华, 金国庆, 王 晖, 等. 马尾松巢式交配子代产脂力、生长和木材密度遗传分析[J]. 林业科学研究, 2014, 27(6):715-720. doi: 10.13275/j.cnki.lykxyj.2014.06.001

    [16]

    DE RESENDE BARONI G, DE PIERE C, FURTADO E L, et al. Genetic parameters of Eucalyptus pilularis resistance to rust in controlled and field conditions[J]. Australasian Plant Pathology:Journal of the Australasian Plant Pathology Society, 2020, 49(5): 65-68.
    [17] 姚小华, 王亚萍, 王开良, 等. 地理经纬度对油茶籽中脂肪及脂肪酸组成的影响[J]. 中国油脂, 2011, 36(4):31-34.

    [18] 谢一青, 李志真, 姚小华, 等. 小果油茶果实性状与含油率及脂肪酸组成相关性分析[J]. 中国油脂, 2013, 38(5):80-83.

    [19] 周长富, 姚小华, 林 萍, 等. 油茶种子发育过程组分含量动态研究[J]. 中国油料作物学报, 2013, 35(6):680-685.

    [20] 唐启义. DPS数据处理系统[M]. 北京: 科学出版社, 2010.

    [21] 梁一池. 矩形区组方“RBS”设计及其在树木育种中的应用 Ⅳ. “RBS”-NCI设计统计分析[J]. 福建林业科技, 1998, 25(4):2-7.

    [22] 续九如. 林木数量遗传学[M]. 北京: 高等教育出版社, 2006.

    [23]

    JASSIML A H, AZIZ J M. Estimation of the combining ability and the gene action for several of genotypes for Flax (Linum usitatissimum L. )[J]. IOP Conference Series:Earth and Environmental Science, 2021, 904(1): 12018-12025. doi: 10.1088/1755-1315/904/1/012018
    [24] 吴 裕, 毛常丽. 树木育种学中遗传力、重复力和遗传增益的概念及思考[J]. 热带农业科技, 2012, 35(1):47-50. doi: 10.3969/j.issn.1672-450X.2012.01.015

    [25]

    SHIPN, SINGH, PARMAR, et al. Heterosis and combining ability studies for yield and quality traits in bottle gourd (Lagenaria siceraria (Mol. ) Standl. )[J]. Environment and Ecology, 2018, 36(3): 798-807.
    [26]

    QUAMRUZZAMAN A, SALIM M, AKHTER L, et al. Heterosis, combining ability and gene action for yield in bottle gourd[J]. American Journal of Botany, 2020, 11(5): 642-652.
    [27] 谭小梅, 金国庆, 邵纪清, 等. 马尾松巢式交配子代生长和木材基本密度遗传分析[J]. 林业科学, 2011, 47(6):30-35. doi: 10.11707/j.1001-7488.20110605

    [28] 齐 明. 杉木育种中GCA与SCA的相对重要性[J]. 林业科学研究, 1996, 9(5):498-503. doi: 10.3321/j.issn:1001-1498.1996.05.010

    [29]

    ZHANG G. Generation of genetic determination of Fraxinus mandshurica seed orchard of half-sib and superior family selection[J]. Forestry Science & Technology, 2014, 39(4): 5-8.
    [30]

    YU D, ACADEMY C F. Selection and breeding of olive superior trees in Longnan of Gansu Province[J]. Nonwood Forest Research, 2013, 31(3): 86-92.
    [31]

    TAO S. The research on the superior tree selection and seed breeding technology of Chosenia arbutifolia[J]. Forestry Science & Technology, 2014, 39(1): 29-31.
    [32]

    JIAN-DE O U, BUREAU M F. Combination selection of excellent families and plus trees of Phoebe bournei[J]. Journal of Southwest Forestry University, 2015, 35(1): 33-37.
    [33]

    LIU H. Selection of excellent families and individual plants of Korean koraiensis[J]. Forestry Science & Technology, 2019, 44(6): 9-11.
    [34] 邓玉华. 大叶栎优良种源与家系选择研究[D]. 长沙: 中南林业科技大学, 2019.

    [35]

    CHAOQUN D U, YEZHOU X U, YANG D, et al. Variations for growth and oleoresin traits of half-sib families of Pinus elliottii[J]. Journal of Forest and Environment, 2017, 37(4): 423-428.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(7)

Article views(3988) PDF downloads(124) Cited by()

Proportional views

Genetic Analysis of the Fruit and Oil Related Traits on Hybrid Offspring of Nested Mating of Camellia oleifera

    Corresponding author: LIN Ping, linping80@126.com
  • 1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Key Laboratory of Zhejiang Province, Hangzhou 311400, Zhejiang, China
  • 2. Graduate School of Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • 3. Dongfanghong Forest Farm of Zhejiang Province, Jinhua 321025, Zhejiang, China

Abstract:  Objective To Select the optimal parent and parental combination for improving breeding efficiency and maximize genetic gain in oil-tea hybrid breeding. Method In this study, 11 fruit and oil related traits were detected in the intraspecific and interspecific hybrid progeny in nest design, including weight of single fruit, seed rate of fresh fruit, kernel rate of dry seeds, oil content of kernel and seven kinds of fatty acid content in the oil. The general combining ability (GCA) of female parent and special combining ability (SCA) of hybridized combination were analyzed. The genetic control modes for 11 traits were analyzed. Result There were highly significant differences in 11 traits among 12 families. These differences mainly caused by paternal effects at the level of P < 0.01, and only the differences of stearic acid and linoleic acid content were affected by maternal effects at the level of P < 0.05. The GCA and SCA of the parents were comprehensively analyzed. The intraspecific hybridization ‘Changlin No.4’ × ‘Changlin No.23’ showed better combining ability in weight of single fruit, seed rate of fresh fruit, kernel rate of dry seeds, oil content of kernel and oleic acid content in oil. The interspecific hybridization of Camellia oleifera and C. meiocarpa ‘Changlin No. 53’ × ‘Xiao No.3’ had a better performance on weight of single fruit, palmitic acid, linoleic acid and linolenic acid content. The cross of ‘Changlin No. 53’ × ‘Xiao No.2’ had advantages in seed rate of fresh fruit, kernel rate of dry seeds, oil content of kernel and oleic acid content. The analysis of genetic effect showed that stearic acid, oleic acid and linoleic acid content were mainly controlled by additive genetic effect, while the other eight traits were mainly influenced by non-additive genetic effect. The heritability of 11 economic traits of per plant was greater than that of families. The breeding strategy of selecting excellent individual plants within the full-sib families should be adopted in the cross breeding of C. oleifera. Conclusion The economic traits of C. oleifera are mainly controlled by inheritance, and less affected by environment. Weight of single fruit, seed rate of fresh fruit, kernel rate of dry seeds, oil content of kernel, palmitic acid, palmitoleic acid, linolenic acid and cis-11-eicosenoic acid content were mainly controlled by non-additive gene effect, and the influence of additive gene effect is relatively low. In interspecific hybridization, SCA evaluation of hybridized combination should be given priority. In this study, we explored the parental allocation and genetic effects of interspecific hybridization between C. oleifera and C. meiocarpa, which laid a theoretical foundation for guiding interspecific hybridization breeding of C.oleifera.

  • 油茶(Camellia oleifera Abel.)是我国南方一种重要的木本食用油料作物[1]。茶油色清味香,单不饱和脂肪酸含量高,富含角鲨烯、维生素E等保健成分,营养丰富,性质稳定,长期食用可有效改善我国公民的膳食结构[2-4]。另一方面,发展油茶产业,对保障我国的粮油安全具有重要意义[5]。近年来,油茶产业发展迅速,已成为我国产量最高的四大油料(油菜(Brassica spp.)、大豆(Glycine max (Linn.) Merr.)、花生(Arachis hypogaea Linn.)和油茶)之一[6-7]。产业健康发展,高产优质的油茶良种是基础和关键。

    杂交育种作为最有成效的遗传改良技术之一,在林木育种上普遍应用。杂交亲本的科学选配是实现多个优良性状聚合,提高杂交育种效率的先决条件[8-11]。配合力是亲本选择和组合配置的重要依据,配合力包括一般配合力(GCA)和特殊配合力 (SCA)。一般配合力指一个个体与其他个体交配产生的后代的平均表现;特殊配合力指某特定组合在其双亲平均表现的基础上与预期结果的偏差[12]。单个亲本的GCA及双亲间的SCA越高,其杂交子代相应性状的表现越好。杂交育种也是现阶段油茶育种的重要手段和途径,但主要还局限于简单的具有互补性状的亲本杂交[13]。林萍等[14]以杂交子代幼林为材料,开展了杂交亲本在生长性状及油脂相关经济性状的配合力和遗传力评估,为油茶杂交育种的亲本选配研究开展了有益探索。但幼林的各性状受环境影响较大,且亲本配合力及各性状遗传力随着树龄的增长会发生变化,这在马尾松[15]、桉树[16]等多个林木类树种中已证实。因此,以杂交子代成林为研究材料,开展油茶重要经济性状的亲本选配研究对油茶杂交育种具有重要意义。

    普通油茶(C. oleifera)又名中果油茶,因果实较大、产量高,是我国油茶产业第一位的主栽物种。小果油茶(C. meiocarpa)虽果实较小,因其果皮薄,出籽率高,且与普通油茶花期相近,在普通油茶杂交育种中常被视作培育高出籽率良种的优良亲本;但普通油茶与小果油茶开展种间杂交,亲本重要性状的配合力、遗传力等重要遗传参数未见评估。研究组在前期以普通油茶和小果油茶为亲本采用巢式交配设计创制了12个杂交组合,本研究测定分析进入盛产期的7年生杂交子代测定林11个果实和油脂性状,估算油茶亲本的遗传参数,比较种内杂交(普通油茶 × 普通油茶)与种间杂交(普通油茶 × 小果油茶)的差异,为油茶杂交育种,尤其是为普通油茶与小果油茶种间杂交育种的亲本选配提供参考依据。

    • 2010年11月上旬在浙江金华东方红林场国家油茶种质资源收集库内选择具有不同优良性状的4个普通油茶无性系良种为母本,7个普通油茶和5个小果油茶无性系为父本(表1),按照巢式设计控制授粉杂交12个组合(表2),每组合控制授粉200朵花。2011年10月果实成熟,12个组合共收获杂交果实342个,杂交种子1 200余粒。杂交种子于2012年春季播种育苗,2014年1月实生苗造林。造林按照完全随机区组设计,10株小区,重复3次,造林密度3 m × 2 m。

      物种 Species亲本 Parent原产地 Origin特点 Traits
      普通油茶
      C. oleifera
      长林4号
      Changlin No.4
      江西茅岗
      Maogang, Jiangxi
      国家审定良种(国S-SC-CO-006-2008,果桃形,干出籽率26.9%,出仁率54.0%,含油率46.0%,高产稳产。盛产期亩产油能达到60.0 kg。
      The national approved variety (national S-SC-CO-006-2008) with high and stable fruit yield. The fruit shape is like a peach, the rate of dry seed to fresh fruit is 26.9%, the rate of kernel to seed is 54.0%, 46.0% oil content in kernel. The oil yield per mu is 60.0 kg in the peak production period.
      长林10号
      Changlin No.10
      江西茅岗
      Maogang, Jiangxi
      经过多地点区试,长势极旺。果近橄榄型,鲜出籽率43.63%,干仁含油率40.56%,产量较低。
      With vigorous growth. The fruit shape is nearly olive. The rate of fresh seed to fresh fruit is 43.63%, the oil content in dry kernel is 40.56%, and the fruit yield is lower.
      长林18号
      Changlin No.18
      浙江安吉
      Anji, Zhejiang
      国家审定良种(国S-SC-CO-007-2008),果球形至橘形,鲜果出籽率47.4%,干仁含油率48.6%,丰产稳产。盛产期亩产油41.6 kg,产量中等。
      National approved variety (national S-SC-CO-007-2008) with high and stable fruit yield. The fruit shape is like a ball or orange. The rate of fresh seed to fresh fruit is 47.4%, the oil content in dry kernel is 48.6%. In the peak production period, 41.6 kg oil can be produced per mu.
      长林23号
      Changlin No.23
      浙江安吉
      Anji, Zhejiang
      国家审定良种(国S-SC-CO-008-2008),果近橘形,鲜果出籽率53.8%,干仁含油率53.5%,丰产稳产。盛产期亩产油能达到70.9 kg。
      The national approved variety (national S-SC-CO-008-2008) has fruit nearly orange shape. The rate of seed to fresh fruit is 53.8%, and the oil content of dry kernel is 53.5%, with high and stable yield. The oil yield per mu can reach 70.9 kg in the peak production period.
      长林40号
      Changlin No.40
      浙江安吉
      Anji, Zhejiang
      国家审定良种(国S-SC-CO-011-2008),果近梨形,干出籽率25.2%,出仁率63.1%,干仁含油率50.3%,高产稳产。盛产期亩产油能达到65.9 kg。
      The national approved variety (National S-SC-CO-011-2008), the fruit is like pear shape, with a rate of dry seed to fresh fruit of 25.2%, a rate of dry kernel to dry seed of 63.1%, and an oil content in kernel of 50.3%. It has a high and stable yield. The oil yield per mu can reach 65.9 kg in the peak production period.
      长林53号
      Changlin No.53
      浙江安吉
      Anji, Zhejiang
      国家审定良种(国S-SC-CO-012-2008),果梨形,鲜果出籽率27.0%,出仁率59.2%,干仁含油率45.0%。盛产期亩产油能达到74.7 kg。
      The national approved variety (national S-SC-CO-012-2008). The fruit is like pear shape, with the rate of fresh seed to fresh fruit of 27.0%, the rate of dry kernel to dry seed of 59.2%, and oil content in dry kernel of 45.0%. The oil yield per mu can reach 74.7 kg in the peak production period.
      长林95号
      Changlin No.95
      江西宜春
      Yichun, Jiangxi
      经过多地点区试,果近球形,鲜果出籽率64.91%,干仁含油率42.96%,产量中等。
      The fruit shape is nearly a ball, the rate of fresh seed to fresh fruit is 64.91% , the oil content in dry kernel is 42.96%, and the fruit yield is medium.
      小果油茶
      C. meiocarpa
      小果1号
      Xiao No.1
      江西分宜
      Fenyi, Jiangxi
      经过多地点区试,果近橄榄型,平均单果质量5.04 g,鲜出籽率59.76%,干出籽率48.94%。
      The fruit shape is nearly olive, with an average single fruit weight of 5.04g. The rate of fresh seed to fresh fruit is 59.76%, and that of dry seed to fresh fruit is 48.94%.
      小果2号
      Xiao No.2
      江西分宜
      Fenyi, Jiangxi
      经过多地点区试,长势旺,果近橄榄型,青色。
      With vigorous growth. The fruit shape is nearly olive, and fruit color is green.
      小果3号
      Xiao No.3
      江西分宜
      Fenyi, Jiangxi
      经过多地点区试,长势旺,果近球型,青色,平均单果质量7.10 g,鲜出籽率63.58%。
      With vigorous growth. The fruit shape is nearly a ball, and fruit color is green. The average weight of single fruit is 7.10 g and the rate of fresh seed to fresh fruit is 63.58%.
      小果4号
      Xiao No.4
      浙江金华
      Jinhua,Zhejiang
      --
      小果D1号
      Xiao No.D1
      浙江金华
      Jinhua,Zhejiang
      --

      Table 1.  Traits of 12 oil-tea clones as cross parents in this study

      组合 Cross母本 Female parent父本 Male parent组合 Cross母本 Female parent父本 Male parent
      1 长林53号 Changlin No.53 小果1号 Xiao No.1 7 长林10号 Changlin No.10 长林4号 Changlin No.4
      2 长林53号 Changlin No.53 小果2号 Xiao No.2 8 长林10号 Changlin No.10 长林40号 Changlin No.40
      3 长林53号 Changlin No.53 小果3号 Xiao No.3 9 长林10号 Changlin No.10 长林53号 Changlin No.53
      4 长林4号 Changlin No.4 长林18号 Changlin No.18 10 长林40号 Changlin No.40 长林10号 Changlin No.10
      5 长林4号 Changlin No.4 长林23号 Changlin No.23 11 长林40号 Changlin No.40 长林95号 Changlin No.95
      6 长林4号 Changlin No.4 小果4号 Xiao No.4 12 长林40号 Changlin No.40 小果D1号 Xiao No.D1

      Table 2.  Parental nest mating design

    • 2021年子代测定林郁闭度达90%以上,平均单株冠幅6 m2,单株果实产量有显著分化,分布在0.12~15.35 kg范围内。每杂交组合10株一小区,3次重复,共30个单株调查取样。2021年10月待5%以上果实开裂时,每单株随机取30个果实,测定单果质量(weight)、鲜果出籽率(RSF)和干籽出仁率(RKS)等性状平均值作为单株果实性状数据。测定种仁含油率(OC)、油脂脂肪酸成分及含量作为单株油脂性状数据。鲜果出籽率、干籽出仁率、种仁含油率等性状测定采用姚小华等[17]和谢一青等[18]的方法。油脂脂肪酸成分测定采用气相色谱法,具体参照周长富等[19]的方法。

    • 本研究采用DPS统计软件[20]对杂交子代果实和油脂相关性状数据进行分析。采用单因素方差分析评估杂交组合间的性状差异,若杂交组合间差异显著,根据巢式(NCI)随机区组设计分析模型评估母本效应和母本内父本效应。母本的GCA和杂交组合的SCA的估算参照梁一池[21]和吴兵等[12]的方法进行:

      (1)母本GCA的估算:$ {\hat y_i} = {\bar x_i} - \bar x $

      式中:$ {\hat y_i} $为母本GCA估值;$ {\bar x_i} $为母本平均值;$ \bar x $为群体平均值。

      (2)组合SCA的估算:$ {\hat s_{ij}} = {\bar x_j} - \bar x - {\hat y_i} $

      式中:$ {\hat s_{ij}} $为组合SCA估值;$ {\bar x_j} $为组合子代平均值;$ \bar x $为群体平均值。

      对于遗传参数的估算参照续九如[22]的方法进行:

      (1)方差分量估算

      母本方差($ {\sigma }_{F}^{2} $):$ {\sigma }_{F}^{2} $=$ {V}_{A}/4 $

      父本方差($ {\sigma }_{M}^{2} $):$ {\sigma }_{M}^{2} $=$ {V}_{A}/4 + {V}_{D}/4 $

      加性遗传方差(VA):$ {V}_{A}=4{\sigma }_{F}^{2} $

      非加性遗传方差(VD):$ {V}_{D}=4({\sigma }_{M}^{2}-{\sigma }_{F}^{2}) $

      遗传方差(Vg):$ {V}_{g} $=$ {V}_{A} + {V}_{D} $

      表型方差(Vp):$ {V}_{P}={V}_{g} + {\sigma }_{e}^{2} $

      (2)遗传力估算

      全同胞家系遗传力(H2):

      全同胞单株遗传力(h2):$ {h}^{2}=\dfrac{2({\sigma }_{F}^{2} + {\sigma }_{M}^{2})}{{\sigma }_{F}^{2} + {\sigma }_{M}^{2} + {\sigma }_{e}^{2}}= \dfrac{2\left[\right({V}_{1} + (F-{1)V}_{2}-F{V}_{3}]}{{V}_{1} + (M-1){V}_{2} + M(B-1){V}_{3}} $

      式中:$ {\sigma }_{F}^{2} $为母本方差,$ {\sigma }_{M}^{2} $为母本内父本方差,$ {\sigma }_{e}^{2} $为环境方差(机误),F为母本个数,M为与同一母本杂交的父本个数,B为重复数。

    2.   结果与分析
    • 表3表明:油茶单果质量、鲜果出籽率、干籽出仁率、种仁含油率及油脂中各脂肪酸成分含量在不同杂交组合间均差异极显著(P<0.01),意味着选择具有不同性状表现的无性系开展杂交,可为油茶育种创制出变异丰富的育种群体。12个杂交组合的平均单果质量、鲜果出籽率和干籽出仁率分别为14.91 g、25.69%和60.79%,变异系数分别为36.29%、25.05%和11.40%。在油脂性状中,种仁含油率、棕榈酸、棕榈烯酸、硬脂酸、油酸、亚油酸、亚麻酸和顺-11-二十碳烯酸含量的平均值分别是39.99%、8.74%、0.12%、1.96%、78.66%、9.65%、0.36%和0.53%;变异系数分别为17.62%、7.72%、24.76%、18.83%、3.62%、25.58%、27.24%和10.89%。在测定的11个性状中,单果质量的变异系数最高,单果质量的最高单株是最低单株的6.2倍;油酸含量的变异系数最低,油酸含量的最高单株仅是最低单株的1.28倍。亚油酸、亚麻酸含量及鲜果出籽率亦具有较高的变异系数。进一步分析结果表明,除硬脂酸和亚油酸含量在母本间差异显著外(P <0.05),各经济性状的变异来源主要存在于母本内父本间效应,均在P < 0.01水平上差异显著。这与本研究中母本只包括普通油茶,父本中既有普通油茶亦有小果油茶的设置是一致的。

      编号
      Number
      性状
      Traits
      变异来源 Sources of variation平均值
      Mean
      变异范围
      Variance range
      变异系数
      CV/%
      区组
      Block
      组合
      Cross
      母本间
      Female
      parent
      母本内父本间
      Male parent with
      same female parent
      误差
      Error
      1 单果质量
      Weight of single fruit/g
      2.675 1 721.247** 365.287 9.273 4** 16.193 14.91 4.90~30.60 36.29
      2 鲜果出籽率
      Rate of dry seed to
      fresh fruit (RSF)/%
      0.000 3 0.011** 0.0245 0.002 2** 0.003 7 25.69 4.60~64.40 25.05
      3 干籽出仁率
      Rate of dry kernel
      to dry seed (RKS)/%
      0.000 9 0.011 6** 0.066 0 0.002 1** 0.003 4 60.79 32.30~75.30 11.40
      4 种仁含油率
      Oil content of kernel (OC)/%
      0.000 5** 0.045** 0.035 5 0.003 9** 0.003 5 39.99 16.30~53.60 17.62
      5 棕榈酸C16:0 Palmitic acid/% 1.048 0 7.499** 4.649 6 0.216 2** 0.301 4 8.74 7.10~10.90 7.72
      6 棕榈烯酸C16:1 Palmitoleic acid/% 0.000 4 0.005 1** 0.007 3 0.000 6** 0.000 6 0.12 0.06~0.33 24.76
      7 硬脂酸C18:0 Stearic acid/% 0.040 5 4.307 9** 1.076 8* 0.024 8** 0.082 4 1.96 1.15~3.32 18.83
      8 油酸C18:1 Oleic acid/% 6.193 1 216.880** 68.961 5 2.324 9** 5.126 78.66 65.60~83.90 3.62
      9 亚油酸C18:2 Linoleic acid/% 2.604 3 199.578** 49.508* 1.422 7** 3.599 1 9.65 3.90~20.80 25.58
      10 α-亚麻酸C18:3 Linolenic acid/% 0.004 2 0.150 8** 0.083 7 0.005 3** 0.006 9 0.36 0.10~0.83 27.24
      11 顺-11-二十碳烯酸C20:1
      Cis-11-eicosenoic acid/%
      0.000 3 0.045 7** 0.028 0 0.001 0** 0.002 5 0.53 0.40~0.74 10.89
      注:各性状的变异来源数值均为期望均方; *表示在P<0.05水平差异显著,**表示在P<0.01水平差异显著。
        Note: The values of the sources of variation for traits are expected mean squares; * means significant difference at the 0.05 level,** means significant difference at the 0.01 level.

      Table 3.  Variance analysis of the economic traits of the F1 progeny

      进一步对差异显著的性状进行多重比较,结果(表4)显示:12个杂交组合中,单果质量最大的是种内杂交组合10 × 4,其平均值为19.62 g;最小组合为种间杂交组合40 × 小D1,其平均值仅为8.02 g,前者是后者的2.45倍,差异显著。种内杂交单果质量最低组合(40 × 95)的平均值为16.33 g,种间杂交单果质量最高组合(53 × 小3)的平均值为13.33 g。可见,种内杂交单果质量均显著大于种间杂交组合。鲜果出籽率较高的组合是40 × 95和4 × 23,平均值分别为29.38%和29.14%。种间杂交组合53 × 小1、53 × 小2和53 × 小3鲜果出籽率略低,与种内杂交组合40 × 95和4 × 23差异不显著;4 × 小4和40 × 小D1在鲜果出籽率上表现较差,不具有好的杂交收益。组合4 × 23的干籽出仁率最高,达到65.64%;其次是10 × 4、40 × 95和4 × 18,其平均值均高于64%。与种内杂交组合相比,大多数种间杂交组合的干籽出仁率均较低,仅53 × 小2和40 × 小D1两个组合的干籽出仁率超过了60%,均值分别为61.72%和61.00%。种仁含油率相对较高的组合分别是4 × 23、4 × 18和40 × 95,其平均值分别为46.53%、45.05%和43.58%,在该性状上表现出较好的杂交优势。

      组合
      Cross
      单果质量
      Weight of single fruit/g
      鲜果出籽率
      RSF/%
      干籽出仁率
      RKS/%
      种仁含油率
      OC/%
      棕榈酸C16:0
      Palmitic acid/%
      棕榈烯酸C16:1
      Palmitoleic acid/%
      53 × 小1 11.78 ± 2.12 D 26.30 ± 3.98 ABC 58.84 ± 4.52 E 35.26 ± 8.64 EF 8.40 ± 0.73 EF 0.12 ± 0.02BCD
      53 × 小2 10.01 ± 1.58 DE 28.73 ± 2.87 AB 61.72 ± 4.25 BCDE 40.43 ± 3.72 CDE 8.43 ± 0.36 EF 0.11 ± 0.02 CDEF
      53 × 小3 13.33 ± 5.71 D 26.51 ± 11.82 ABC 58.20 ± 6.39 E 35.16 ± 8.59 F 9.60 ± 0.69 A 0.14 ± 0.06 AB
      4 × 18 19.14 ± 3.92 AB 25.03 ± 2.71 BCD 64.07 ± 3.32 ABCD 45.05 ± 1.63 AB 9.39 ± 0.51 AB 0.14 ± 0.02 A
      4 × 23 17.65 ± 4.33 ABC 29.14 ± 11.82 A 65.64 ± 5.14 A 46.53 ± 4.82 A 8.82 ± 0.71 CD 0.09 ± 0.02 G
      4 × 小4 10.80 ± 2.07 D 23.42 ± 4.29 CD 50.50 ± 10.61 F 36.80 ± 6.43 EF 9.16 ± 0.43 BC 0.11 ± 0.02 CDEF
      10 × 4 19.62 ± 4.25 A 25.58 ± 3.32 ABC 65.18 ± 4.92 AB 42.44 ± 5.43 BCD 8.75 ± 0.57 DE 0.10 ± 0.01 EFG
      10 × 40 17.40 ± 5.80 ABC 22.74 ± 2.35 CD 60.02 ± 4.90 E 38.47 ± 6.42 EF 8.29 ± 0.47 F 0.12 ± 0.01 CDE
      10 × 53 17.92 ± 3.37 ABC 26.67 ± 3.67 ABC 60.64 ± 4.19 DE 39.48 ± 4.35 DE 8.47 ± 0.42 DEF 0.10 ± 0.01 FG
      40 × 10 16.94 ± 4.93 BC 21.07 ± 4.07 D 59.18 ± 6.62 E 38.29 ± 6.47 EF 8.56 ± 0.51 DEF 0.11 ± 0.02 DEFG
      40 × 95 16.33 ± 3.18 C 29.38 ± 5.00 A 64.48 ± 5.26 ABC 43.58 ± 6.22 ABC 8.66 ± 0.55 DE 0.12 ± 0.02 ABC
      40 × 小D1 8.02 ± 2.55 E 23.74 ± 4.48 CD 61.00 ± 4.69 CDE 38.35 ± 6.70 EF 8.39 ± 0.35 EF 0.12 ± 0.01 ABC
      组合
      Cross
      硬脂酸C18:0
      Stearic acid/%
      油酸C18:1
      Oleic acid/%
      亚油酸C18:2
      Linoleic acid/%
      α-亚麻酸C18:3
      Linolenic acid/%
      顺-11-二十碳烯酸C20:1
      Cis-11-eicosenoic acid/%
      53 × 小1 1.67 ± 0.20 E 78.63 ± 2.75 C 10.24 ± 2.21 BCD 0.38 ± 0.07 BC 0.57 ± 0.06 AB
      53 × 小2 1.68 ± 0.14 E 78.69 ± 1.58 C 10.17 ± 1.32 BCD 0.34 ± 0.05 CDE 0.57 ± 0.03 A
      53 × 小3 1.68 ± 0.21 E 74.54 ± 4.39 E 13.32 ± 3.44 A 0.45 ± 0.16 A 0.54 ± 0.06 BCD
      4 × 18 1.88 ± 0.17 CD 76.81 ± 0.80 D 10.86 ± 0.44 BC 0.42 ± 0.03 AB 0.50 ± 0.02 EF
      4 × 23 2.06 ± 0.17 BC 78.64 ± 1.95 C 9.57 ± 1.46 D 0.32 ± 0.05 DEF 0.50 ± 0.05 EF
      4 × 小4 1.74 ± 0.24 DE 76.61 ± 2.11 D 11.35 ± 1.90 B 0.46 ± 0.12 A 0.56 ± 0.07 ABC
      10 × 4 1.81 ± 0.19 DE 78.88 ± 2.35 BC 9.68 ± 2.07 CD 0.29 ± 0.06 EF 0.49 ± 0.05 EF
      10 × 40 2.42 ± 0.61 A 80.67 ± 1.83 A 7.63 ± 1.91 E 0.34 ± 0.05 CDE 0.52 ± 0.03 DE
      10 × 53 2.03 ± 0.19 BC 80.35 ± 1.54 AB 8.15 ± 1.27 E 0.33 ± 0.04 CDEF 0.57 ± 0.05 A
      40 × 10 2.33 ± 0.32 A 80.66 ± 1.56 A 7.44 ± 1.48 E 0.37 ± 0.09 BCD 0.53 ± 0.06 CD
      40 × 95 2.13 ± 0.30 B 78.69 ± 1.73 C 9.62 ± 1.47 CD 0.28 ± 0.06 F 0.49 ± 0.04 EF
      40 × 小D1 2.05 ± 0.24 BC 80.80 ± 1.56 A 7.79 ± 1.31 E 0.34 ± 0.07 CDE 0.49 ± 0.04 F
      注:表中数据均为平均值 ± 标准差,同列不同大写字母表示在P<0.01水平差异显著。
        Notes: The different letters of LSD indicate the significant difference at 0.01 level

      Table 4.  Multiple comparison results of economic traits in F1 progeny

      在脂肪酸成分中,棕榈酸含量较高的组合是53 × 小3和4 × 18,分别占脂肪酸成分的9.60%和9.39%。硬脂酸含量较高的组合为10 × 40和40 × 10,种间杂交组合40 × 小D1在该性状上表现较好,与其余种间杂交组合差异显著。油茶脂肪酸的主要成分油酸含量较高的组合为40 × 小D1、10 × 40、40 × 10和10 × 53,分别为80.80%、80.67%、80.66%和80.35%,53 × 小3油酸含量最低,仅为74.54%,显著低于其余组合。53 × 小3的亚油酸含量最高,显著高于其他组合的平均值,在该性状上具有较高的杂交收益。棕榈烯酸、α-亚麻酸和顺-11-二十碳烯酸在油茶油脂中绝对含量较低,其含量在组合间的变异范围较小。53 × 小3和4 × 18的棕榈烯酸含量相当,在所有组合中最高,平均值均为0.14%, 4 × 小4和53 × 小3在所有组合中α-亚麻酸含量最高,分别为0.46%和0.45%;53 × 小2、53 × 小1和10 × 53的顺-11-二十碳烯酸含量均达到了0.57%,在该性状上具有较好的杂交优势。综上所述,组合4 × 23在鲜果出籽率、干籽出仁率、种仁含油率等指标上均表现出优势,组合53 × 小3在棕榈酸、棕榈烯酸、亚油酸和α-亚麻酸等油茶油脂性状关键指标上显示出优势,组合10 × 40在硬脂酸、油酸等油脂性状上也表现出一定的优势。种间杂交组合4 × 小4和40 × 小D1在单果质量、鲜果出籽率、干籽出仁率和种仁含油率等性状上均较差,不具有很好的性状表现。

    • GCA和SCA是杂交育种中亲本选择的重要依据,GCA和SCA值越大,获得的遗传增益更好[23]。杂交亲本GCA分析结果(表5)表明:母本长林53号在鲜果出籽率和亚油酸含量的GCA最高,分别为1.49和1.59;长林4号在种仁含油率、棕榈酸和亚油酸含量上具有较高的GCA,其杂交子代表现出良好的遗传增益;长林10号在单果质量、干籽出仁率和油酸含量的GCA较高,分别为3.40、1.16和1.30;长林40号的杂交子代在油酸和硬脂酸含量有较好的遗传增益。

      亲本
      Parents
      单果质量
      Weight of
      single fruit
      鲜果
      出籽率
      RSF
      干籽
      出仁率
      RKS
      种仁
      含油率
      OC
      棕榈酸C16:0
      Palmitic acid
      棕榈烯酸C16:1
      Palmitoleic acid
      硬脂酸C18:0
      Stearic acid
      油酸C18:1
      Oleic acid
      亚油酸C18:2
      Linoleic acid
      α-亚麻酸C18:3
      Linolenic acid
      顺-11-二十碳烯酸C20:1
      Cis-11-eicosenoic acid
      长林53号
      Changlin No.53
      −3.201.49−1.20−3.040.070.01−0.28−1.381.590.030.03
      长林4号
      Changlin No.4
      0.950.17−0.722.810.380.00−0.06−1.310.940.04−0.01
      长林10号
      Changlin No.10
      3.40−0.701.160.15−0.24−0.010.131.30−1.17−0.040.00
      长林40号
      Changlin No.40
      −1.15−0.960.760.08−0.210.000.211.39−1.37−0.03−0.02

      Table 5.  Estimated GCA of female parent of each cross

      12个杂交组合的各经济性状的SCA(表6)表明:种内杂交组合在果实性状的SCA多高于种间杂交组合。种间杂交组合4 × 小4在4个果实性状的SCA分别为−5.06、−2.44、−9.57和−5.99,该组合在果实性状上的综合表现显著低于其他组合相应的SCA。因此,通过4 × 小4种间杂交选育聚合大果和高出籽率优良性状的新种质的概率极低。种内杂交组合4 × 23和40 × 95在单果质量、鲜果出籽率、干籽出仁率和种仁含油率4个性状上均具有较高的SCA值,4 × 23在这4个性状的SCA分别为1.79、3.27、5.57和3.74,40 × 95在这4个性状的SCA分别为2.57、4.65、2.93和3.51,这两个组合在这4个性状上的综合表现明显优于其他种内种间组合,是创制聚合多个果实优良性状新种质的首选组合。种间杂交组合53 × 小2在鲜果出籽率、干籽出仁率和种仁含油率上具有较高的SCA,53 × 小3在单果质量的SCA具有较好表现,这2个组合在通过种间杂交创制具备优良果实性状的种质中可深入探索和应用。

      组合
      Cross
      单果质量
      Weight of
      single fruit
      鲜果
      出籽率
      RSF
      干籽
      出仁率
      RKS
      种仁
      含油率
      OC
      棕榈酸
      C16:0
      Palmitic
      acid
      棕榈烯酸
      C16:1
      Palmitoleic
      acid
      硬脂酸
      C18:0
      Stearic
      acid
      油酸
      C18:1
      Oleic
      acid
      亚油酸
      C18:2
      Linoleic
      acid
      α-亚麻酸
      C18:3
      Linolenic
      acid
      顺-11-二十碳烯酸
      C20:1
      Cis-11-eicosenoic
      acid
      53 × 小10.08−0.88−0.74−1.69−0.410.00−0.011.34−1.00−0.010.01
      53 × 小2−1.701.552.133.48−0.38−0.010.001.41−1.08−0.050.01
      53 × 小31.62−0.67−1.39−1.790.790.010.00−2.752.080.06−0.02
      4 × 183.27−0.834.002.250.270.03−0.01−0.540.270.02−0.02
      4 × 231.793.275.573.74−0.30−0.020.171.29−1.03−0.08−0.02
      4 × 小4−5.06−2.44−9.57−5.990.040.00−0.15−0.740.760.060.04
      10 × 41.310.583.232.310.240.00−0.28−1.091.19−0.03−0.04
      10 × 40−0.92−2.26−1.92−1.66−0.210.010.340.71−0.850.02−0.01
      10 × 53−0.391.68−1.30−0.65−0.03−0.01−0.060.38−0.340.010.04
      40 × 103.18−3.66−2.37−1.780.02−0.010.160.61−0.840.040.03
      40 × 952.574.652.933.510.130.01−0.04−1.361.34−0.05−0.01
      40 × 小D1−5.74−0.99−0.55−1.72−0.150.01−0.120.75−0.500.01−0.02

      Table 6.  SCA value between female and male parents of different combinations

      种间杂交组合在油脂性状,尤其是油酸或亚油酸含量的SCA比种内杂交组合具有更好的表现。53 × 小2和53 × 小1油酸含量的SCA较高,分别为1.41和1.34,创制高油酸含量种质可优先考虑这2个组合。53 × 小3亚油酸含量的SCA较高,在以亚油酸含量为育种目的杂交育种中优先使用该杂交组合。种内杂交组合4 × 23和40 × 95分别在油酸和亚油酸含量上的SCA较高。结合亲本组合的GCA值和SCA值,种内杂交组合4 × 23在果实性状和部分油脂性状均表现出较好的配合力,具有较高的遗传增益,种间杂交组合53 × 小2在鲜果出籽率和油酸含量、53 × 小3在单果质量、棕榈酸和亚油酸含量等性状上表现出较高的配合力。

    • 分析父母本方差的相对大小($ {\sigma }_{F}^{2}/{\sigma }_{M}^{2} $)和加性/非加性遗传方差的相对大小($ {V}_{A}/{V}_{D} $)可说明各经济性状的遗传控制方式。表7表明:除硬脂酸和亚油酸含量的母本方差与父本方差相当外,其余经济性状的父本方差均显著高于母本方差,其$ {\sigma }_{F}^{2}/{\sigma }_{M}^{2} $最低的性状为单果质量,比值达0.34,说明父本比母本对子代经济性状变异的贡献率更大,这与方差分析结果一致(表3)。除硬脂酸、油酸和亚油酸之外的8个经济性状的非加性遗传方差均明显高于加性遗传方差,非加性遗传方差占遗传方差的比例超过66.06%,说明在本研究的所有杂交组合中,单果质量、鲜果出籽率、干籽出仁率、种仁含油率、棕榈酸、棕榈烯酸、α-亚麻酸和顺-11-二十碳烯酸8个经济性状均以非加性基因效应控制为主。因此,在以相关性状为目的的杂交育种中,双亲间的SCA的评估很重要。

      遗传参数
      Genetic
      parameters
      单果质量
      Weight of
      single fruit
      鲜果
      出籽率
      RSF
      干籽
      出仁率
      RKS
      种仁
      含油率
      OC
      棕榈酸C16:0
      Palmitic
      acid
      棕榈烯酸C16:1
      Palmitoleic
      acid
      硬脂酸C18:0
      Stearic
      acid
      油酸C18:1
      Oleic
      acid
      亚油酸C18:2
      Linoleic
      acid
      α-亚麻酸C18:3
      Linolenic
      acid
      顺-11-二十碳烯酸C20:1
      Cis-11-eicosenoic
      acid
      母本方差$ {\sigma }_{F}^{2} $
      Female parent
      variance
      3.955 1−0.000 2−0.000 60.000 10.031 70.000 00.035 91.6441.667 40.000 70.000 2
      父本方差$ {\sigma }_{M}^{2} $
      Male parent
      variance
      11.653 60.000 70.002 10.001 10.145 00.000 20.033 32.1341.535 10.002 60.000 9
      环境方差$ {\sigma }_{e}^{2} $
      Environmental
      variance
      15.678 00.003 60.003 30.003 50.300 30.000 60.078 54.9553.455 80.006 80.002 4
      加性遗传方差$ {V}_{A} $
      Additive genetic variance
      15.820 4−0.000 8−0.002 40.000 40.126 6−0.000 10.143 66.5746.669 80.003 00.000 8
      非加性遗传方差$ {V}_{D} $
      Non-additive genetic variance
      30.794 00.003 60.010 80.003 80.453 30.001 0−0.010 51.960−0.529 50.007 30.002 6
      遗传方差$ {V}_{g} $
      Genetic variance
      46.614 40.002 80.008 40.004 30.579 90.000 90.133 18.5346.140 30.010 30.003 4
      表型方差$ {V}_{p} $
      Phenotypic
      variance
      62.292 40.006 40.011 70.007 70.880 20.001 50.211 613.499.596 00.017 00.005 8
      全同胞家系遗传力$ {H}^{2} $
      Heritability of
      full-sib families
      0.453 70.025 00.031 60.254 90.352 90.136 20.885 10.6940.896 50.383 60.343 5
      全同胞单株遗传力$ {h}^{2} $
      Heritability of
      single plant
      0.997 80.243 90.625 00.504 30.740 70.479 40.936 80.8650.962 00.658 10.613 0

      Table 7.  Genetic parameters of economic characters of C. oleifera

      遗传力是反映遗传变量占表型变量的比率,是选择育种中确定亲本,估算遗传增益的重要参数[24]。结果(表7)表明:本研究中所有性状的家系遗传力范围为0.025 0~0.896 5,单株遗传力范围为0.243 9~0.997 8。亚油酸、硬脂酸和油酸含量的家系遗传力普遍高于其它经济性状,分别为0.896 5、0.885 1和0.694,这3个性状主要受遗传因素的影响,由基因控制,受环境条件影响较小。说明通过家系选择,这些性状可以获得较好的改良。鲜果出籽率的遗传力最小,主要受环境条件影响。杂交子代所测定的硬脂酸、油酸和亚油酸的家系遗传力和单株遗传力相对较高,故在油茶遗传改良中,以脂肪酸经济性状为育种目标,进行优良杂交组合或优良单株选择均可以获得更高的遗传增益。

    3.   讨论
    • 在育种工作中,估测杂交亲本的GCA和SCA,可根据育种目的有效筛选最优亲本和最佳组合,从而提高育种效率[25-27]。本研究选取处于盛产期的种内杂交子代和种间杂交子代为研究对象开展遗传分析,旨在揭示普通油茶与小果油茶种间杂交育种的可行性及亲本选配规律,为种间杂交育种策略提供理论基础。齐明[28]在杉木杂交育种的研究中发现,亲本GCA评估比亲本间SCA评估更重要。林萍等[13]在普通油茶种内杂交育种研究中同样证实了该结论。本研究结果表明,当同时分析种内和种间杂交组合时,组合间的差异主要来源于双亲间的SCA,表明在开展种间杂交时组合SCA的评估更重要,可作为优先考虑的因素。本研究中以长林53号为母本的种间杂交组合为例,长林53号的单果质量、干籽出仁率和种仁含油率的GCA在所有母本中均最低,但以长林53号为母本的种间杂交组合分别在这3个性状上具有较高的SCA。结合长林53号果实大和小果油茶出籽率高的特点,双亲的优良性状分别在3个种间组合中获得了良好的遗传增益。因此,在开展普通油茶和小果油茶的杂交中,想要选育果实较大、出籽率高的新品种,首先需要考虑的是亲本的SCA效应,再考虑亲本的GCA。

      优树选择和子代测定是林木育种最基本的方法[29-31]。通过杂交子代的遗传力测定进行优良家系或优良单株选育,可大大提高选择育种的效率[32-34]。遗传力的理论值一般为0~1,遗传力越高,说明该性状变异受环境因素影响越小,遗传能力越强[35]。本次实验首次尝试了选择油茶种间与种内亲本进行杂交测定遗传力,根据本研究的遗传效应评估值,发现油茶的经济性状主要受非加性遗传效应影响。绝大数经济性状的父本方差大于母本的方差,父本对子代变异的贡献值更大。林萍等[13]对油茶杂交子代幼龄时期的遗传力进行研究,发现各经济性状主要受环境影响较大,遗传控制力度较弱,通过筛选优良家系作为优良品种选育的策略是不可取的,在全同胞家系内选择优良单株培育成优良品种的效率更高。本研究发现,进入盛产期后油茶各性状的遗传力显著升高,尤其是硬脂酸、油酸、亚油酸含量等油脂性状主要受遗传控制,受环境影响较小。

      综合考虑亲本配合力和各性状的遗传控制模式,普通油茶种内杂交组合4 × 23在以单果质量、鲜果出籽率、干籽出仁率、种仁含油率和油酸含量等性状为育种目标时可作为优选杂交组合。普通油茶和小果油茶的种间杂交组合53 × 小3可在单果质量、棕榈酸、亚油酸和α-亚麻酸含量育种中加以利用;组合53 × 小2在鲜果出籽率、干籽出仁率、种仁含油率和油酸含量上具有育种优势。本研究以油茶杂交子代成林为材料,首次对油茶种间杂交的亲本配置及遗传效应开展了分析评估,为油茶种间杂交策略提供了理论基础,为科学指导普通油茶与小果油茶种间杂交育种提供了理论指导。

    4.   结论
    • 本研究以油茶种内杂交(普通油茶 × 普通油茶)和种间杂交(普通油茶 × 小果油茶)家系为研究对象,研究子代经济性状的遗传变异规律,解析亲本及亲本组合对子代经济性状的影响。研究发现,杂交子代经济性状在家系间存在极显著的差异,且变异主要来源于父本效应。随着树龄的增长,油茶的多数经济性状主要受遗传控制,环境因素影响较小。遗传效应分析表明,硬脂酸、油酸和亚油酸含量主要受加性遗传控制,其余8个经济性状的非加性遗传方差显著高于加性遗传方差。比较种内和种间杂交亲本配合力的差异表明,组合间的差异主要来源于双亲间的SCA,因此,在油茶杂交育种中,尤其是开展种间杂交时,应将双亲SCA值的估测放在首位。单株遗传力显著高于家系遗传力,因此,油茶杂交育种中应采用全同胞家系内选择优良单株的育种策略。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return