• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Optim isation of SpatialObjectives in Plann ing for Susta inable ForestMedium-termManagement of Norway Spruce from Northern Germany

  • Received Date: 2006-02-09
  • The paper p resents a planningmodel for a Spruce forest in northern Germanywith a three-component objectivefunction (economic, even flow and spatial). The spatial modeling approach followed in this analysis relies on specificgeographic relations among neighboring stands, including the distance between stand centroids and the length of thecommon boundary between adjoining stands, representing a new approach in spatial optimization. The geographic data arederived from a GIS system and stored in a database, which includes also all stand options and the corresponding objectivefunction coefficients. The method is first applied, using a relative small forestwith 41 stands. 21 alternative options aredeveloped for each stand and the Simulated Annealing algorithm is used to produce an optimum schedule of operations.Solutions are presented for different objective function components and compared with maximum net presentworth. Whenthe even flow and spatial components are added in the objective function, the effects of these two componentsconsiderably improved the solution, while the economic objective is onlymoderately reduced.
  • 加载中
  • [1]

    Yoshimoto A, Bridie J D, Sessions J. A new heuristic to solve spatially constrained long2term harvest scheduling p roblems[J]. Forestscience, 1994, 40: 365 - 396

    [C] / /v Gadow K, Pukkala T, ToméM. SustainableForestManagement. Managing Forest Ecosystems

    [C]. Goettingen: Kluwer Series, 2000, 1: 319 - 356
    [4]

    Hof J G, Joyce L A. Spatial op timization for wildlife and timber inmanaged forest ecosystems [J]. Forest science, 1992, 38 ( 3 ) :489 - 508
    [5]

    Hof J G, Joyce L A. A mixed integer linear p rogramming app roachfor spatially op timisating wildlife and timber in managed forest ecosystems[J]. Forest science, 1993, 39 (4) : 816 - 834

    [C] / /P? ivinen R, Roihuvuo L, Siitonen M. Large-scale forestry scenario models-experiences and requirements. Joensuu Finland: European Forest Institute, 1996, (5) : 153 - 166
    [7]

    Hof J G, BeversM, Joyce L A, et al. An integer p rogramming app roach for spatially and temporally op timising wildlife population[J]. Forest science, 1994, 39 (4) : 816 - 834
    [8]

    Murray A T. Spatial restrictions in harvests scheduling[J]. Forestscience, 1999, 45: 45 - 52
    [9]

    CarterD R, VogitazisM, Moss C B, et al. Ecosystem managementor infeasible guidelines? Imp lications of adjacency restrictions forwildlife habitat and timber p roduction [J]. Can J For Res, 1997,27: 1302 - 1310
    [10]

    Yoshimoto A. Potential use of a spatially constrained harvest schedulingmodel for biodiversity concerns: exclusion periods to create heterogeneity in forest structure[J] J For Res, 2001, 6 (1) : 21 - 30
    [11]

    van Deusen P C V. Scheduling spatial arrangement and harvest simultaneously[J]. Silva Fennicam, 2001, 35 (1) : 85 - 92
    [12]

    Barrett TM, Gilless J K. Even-aged restriction with sub2graph adjacency[J]. Annals of operations research, 2000, 95: 259 - 175
    [13]

    Chen BW, von Gadow K. Timber harvest p lanningwith spatial objectives, using the method of simulated annealing [J]. Forest WCbl, 2002, 121: 25 - 34
    [14]

    ; hman K, Eriksson L O. The core area concep t in forming contiguous areas for long2term forest p lanning [J]. Can J For, 1998, 28:1032 - 1039
    [15] 陈伯望, v Gadow K, Frantisek Vilcko,等, 德国北部挪威云杉林可持续经营中期计划的实例分析[J]. 林业科学研究, 2006, 19(5) : 541 - 546

    [16]

    Schübeler D. Untersuchungen zur standortabh?ngigen Wachstumsmodellierung bei der Fichte [M]. Goettingen: Diss UnivGêttingen, 1997: 155
    [17]

    Sánchez2Orois S, Gurjanov M, Schrêder J. Analyse desGrundfl?chenzuwachses gleichaltriger Fichtenreinbest?nde[J]. AllgForst2& Jagd2Ztg, 2001, 172 (3) : 51 - 59
    [18]

    Spellmann H, u Nagel J, Bêckmann T. Summarische Nutzungsp lanung auf derBasis von Betriebsinventurdaten[J]. Allgemeine Forstund Jagdzeitung, 1999, 170 (7) : 122 - 128
    [19] 陈伯望,惠刚盈, v Gadow K. 线性规划、模拟退火和遗传算法在杉木人工林可持续经营中的应用和比较[J]. 林业科学, 2004,40 (3) : 80 - 87

    [20]

    v Gadow K, Puumalainen J. Scenario p lanning for sustainable forestmanagement
    [21]

    Ware GO, Clutter J L. A mathematical p rogramming system for themanagement of industrial forests [J]. Forest Science, 1971, 17:428 - 445
    [22]

    Hoganson HM, Rose DW. A simulation app roach for op timal timbermanagement scheduling[J]. Forest Science, 1984, 30 ( 1 ) :200 - 238
    [23]

    v Gadow K. Integration von Einzel2und Gesamtnutzungsp lanung inder Forsteinrichtung[J]. Allg Forst u JagdZtg, 1991, 162 ( 4 ) :72 - 75
    [24]

    Lapp i J. JLP2a linear p rogramming package for management p lanning[J]. The Finnish Forest Res Inst Res Paper, 1992, 414: 131
    [25]

    Rodriguez L A. Microcomputer Program for Solving Forest Scheduling Problemswith Heuristic App roaches
    [26]

    Bettinger P, Sessions J, Boston K. Using tabu search to scheduletimber harvests subject to spatial wildlife goals for big game [J].EcologicalModelling, 1997, 94: 111 - 123
    [27]

    Bettinger P, Seccions J, Johnson K N. Ensuring the compatibilityof aquatic habitat and commodity p roduction goals in eastern Oregonwith a Tabu search p rocedure[J]. Forest science, 1998, 44 ( 1) :96 - 112
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(2971) PDF downloads(1015) Cited by()

Proportional views

Optim isation of SpatialObjectives in Plann ing for Susta inable ForestMedium-termManagement of Norway Spruce from Northern Germany

  • 1. Research Institute of Forestry, CAF,Beijing 100091
  • 2. Institut fürWaldinventur undWaldwachstum derUniversit?t Gêttingen,Büsgenweg 5, D237077, Gêttingen, Germany

Abstract: The paper p resents a planningmodel for a Spruce forest in northern Germanywith a three-component objectivefunction (economic, even flow and spatial). The spatial modeling approach followed in this analysis relies on specificgeographic relations among neighboring stands, including the distance between stand centroids and the length of thecommon boundary between adjoining stands, representing a new approach in spatial optimization. The geographic data arederived from a GIS system and stored in a database, which includes also all stand options and the corresponding objectivefunction coefficients. The method is first applied, using a relative small forestwith 41 stands. 21 alternative options aredeveloped for each stand and the Simulated Annealing algorithm is used to produce an optimum schedule of operations.Solutions are presented for different objective function components and compared with maximum net presentworth. Whenthe even flow and spatial components are added in the objective function, the effects of these two componentsconsiderably improved the solution, while the economic objective is onlymoderately reduced.

Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return