• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Genetic Relationship between Holcocerus hippophaecolust and H. vicarious Based on CO Ⅰ、CO Ⅱ and Cyt b Genes

  • Received Date: 2013-04-10
  • Holcocerus hippophaecolust and H. vicarious are closely related species of Holcocerus (Lepidoptera: Cossidae). It is difficult to distinguish them based on morphological characters. This research aims to explore the genetic relationship between H. hippophaecolust and H. vicarious from various populations based on partial mitochondrial DNA (mtDNA) CO Ⅰ, CO Ⅱ and Cyt b genes. The genetic distance between H. hippophaecolust and H. vicarious was only 0.009,0.001 and 0.062 for CO Ⅰ, CO Ⅱ and Cyt b, respectively, which were found close to the mean conspecific divergence and much lower than the mean congeneric genetic distance. The genetic distance estimated in this study showed highly genetic similarity between the two insect species. 6 of 24 total haplotypes are observed as shared haplotypes in 3 mtDNA genes of 2 insect species. Shared haplotypes happened among different populations suggest that the two species are not fully differentiation. Phylogenetic analysis of seven Cossidae species indicates that H. hippophaecolust and H. vicarious formed complex instead of independent branches in all 3 phylogenetic trees. We discussed the possible evolutionary relationship between H. hippophaecolust and H. vicarious based on our current results.
  • 加载中
  • [1] 方德齐, 陈树良. 榆木蠹蛾(柳干木蠹蛾)生物学特性[J]. 林业科学, 1987, 昆虫专辑:72-76

    [2] 花保祯, 周 尧,方德齐, 等. 中国木蠹蛾志(鳞翅目:木蠹蛾科)[M]. 陕西杨陵: 天则出版社, 1990: 38-40 , 56-57

    [3] 宗世祥, 骆有庆, 许志春, 等. 当前沙棘木蠹蛾研究中存在的主要问题[J]. 中国森林病虫, 2006, 25(2): 29-32

    [4] 陈孝达. 沙棘木矗蛾生物学习性及防治研究[J]. 沙棘, 2004, 17(2): 11-13

    [5] 刘晓辉, 冯 敏, 李剑梅. 应用BT-7A防治沙棘木蠹蛾幼虫的试验研究[J]. 沙棘, 2004, 17 (4): 23-25

    [6] 宗世祥. 沙棘木蠹蛾生物生态特性研究. 北京: 北京林业大学, 2006

    [7]

    Behere G T, Tay W T, Russell D A, et al. Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera: Noctuidae) [J]. Bulletin of Entomological Research, 2008, 98 (6): 599
    [8]

    Hajibabaei M, Janzen D H, Burns J M, et al. DNA barcodes distinguish species of tropical Lepidoptera[J]. Proceedings of the National Academy of Science USA, 2006, 103 (4): 968-971
    [9]

    Simonato M, Mendel Z, Kerdelhué C, et al. Phylogeography of the pine processionary moth Thaumetopoea wilkinsoni in the Near East[J]. Molecular Ecology, 2007, 16(11): 2273-2283
    [10]

    Albre J, Gers C, Legal L. Molecular phylogeny of the Erebia tyndarus (Lepidoptera, Rhopalocera, Nymphalidae, Satyrinae) species group combining CoⅡand ND5 mitochondrial genes: A case study of a recent radiation[J]. Molecular Phylogenetics and Evolution, 2008, 47 (1): 196-210
    [11]

    Oliver J C, Shapiro A M. Genetic isolation and cryptic variation within the Lycaena xanthoides species group (Lepidoptera: Lycaenidae) [J]. Molecular Ecology, 2007, 16 (20): 4308-4320
    [12]

    Roe A D, Sperling F A H. Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding[J]. Molecular Phylogenetics and Evolution, 2007, 44 (1): 325-345
    [13]

    Zakharov E V, Hellmann J J. Genetic differentiation across a latitudinal gradient in two co-occurring butterfly species: revealing population differences in a context of climate change[J]. Molecular Ecology, 2008, 17(1): 189-208
    [14]

    Cameron S L, Whiting M F. The complete mitochondrial genome of the tobacco hornworm Manduca sexta (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths[J]. Gene, 2008, 408 (1): 112-123
    [15]

    Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 1994, 3 (5): 294
    [16]

    Simon C, Frati F, Beckenbach A, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers[J]. Annals of the Entomologcal Society of America, 1994, 87 (6): 651-701
    [17]

    Erpenbeck D, Hooper J N A, Wrheide G. CO Ⅰ phylogenies in diploblasts and the 'Barcoding of Life'-are we sequencing a suboptimal partition? [J]. Molecular Ecology Notes, 2006, 6 (2): 550-553
    [18] 杨倩倩, 李志红, 伍 祎,等. 线粒体 CO Ⅰ 基因在昆虫DNA条形码中的研究与应用[J]. 应用昆虫学报, 2012, 49 (6): 1687-1695

    [19] 张学卫, 张智婷, 原占国,等. 昆虫线粒体 DNA Cyt b基因研究进展[J]. 河北林果研究, 2010, 25 (2): 173-176

    [20]

    Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25: 3389 – 3402
    [21]

    Thompson E E, Birdwell G G. Communication system and methods for enhanced information transfer[P]. U.S. Patent, 5,335,276, 1994-8-2
    [22]

    Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16 (2): 111-120
    [23]

    Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25 (11): 1451-1452
    [24]

    Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap [J]. Evolution, 1985, 39: 783-791
    [25]

    Posada D, Crandall K A. Modeltest: testing the model of DNA substitution[J]. Bioinformatics, 1998, 14 (9): 817-818
    [26]

    Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society of London, 2003, B 270: 313-21
    [27]

    Sperling F A H, Hickey D A. Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera) [J]. Mol Biol Evol, 1994, 11: 656-665
    [28]

    Bogdanowicz S M, Wallner W E, Bell J, et al. Asian gypsy moths (Lepidoptera: Lymantriidae) in North America: evidence from molecular data[J]. Annals of the Entomological Society of America, 1993, 86 (6): 710-715
    [29]

    Sperling F A H, Landry J F, Hickey D A. Mitochondrial DNA sequence variation among pheromotypes of the dingy cutworm Feltia jaculifera (Lepidoptera: Noctuidae) [J]. Can J Zool, 1996, 74: 2109-2117
    [30] 张大秀, 郝家胜, 邹方振, 等. 基于线粒体Cyt b 基因和CO Ⅰ 基因序列研究豹蛱蝶亚科 (鳞翅目: 蛱蝶科) 10属间的系统发生关系[J]. 动物分类学报, 2009, 34 (3): 522-530

    [31] 吴冬霞, 郝家胜, 朱国萍,等. 基于线粒体Cyt b 基因的线蛱蝶亚科的系统发育[J]. 动物学研究, 2007, 28 (1): 1-8

    [32]

    Wang N X, Feng X, Jiang G F, et al. Molecular phylogenetic analysis of five subfamilies of the Acrididae (Orthoptera: Acridoidea) based on the mitochondrial cytochrome b and cytochrome c oxidase subunitⅠgene sequences[J]. Acta Entomol Sin, 2008, 51 (11): 1187-1195
    [33] 朱绪伟, 刘彦群, 李喜升, 等. 利用DNA条形编码探讨云南野柞蚕的分类学地位[J]. 蚕业科学, 2008, 34 (3): 424-428

    [34]

    Gajanan T B, Wee T T, Derek A R, et al. Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea[J]. BMC Evolutionary Biology, 2007, 7: 117-126
    [35]

    Rousi A. The genus Hippophae L., a taxonomic study[J]. Annales Botanic Fen, 1971, 8: 177-277
    [36] 廉永善, 陈学林. 沙棘属植物的研究[J]. 甘肃科学学报, 1991, 39 (2): 13-23

    [37]

    Jing Tao, Min Chen, Shi-xiang Zong, et al. Genetic structure in seabuckthorn carpenter moth (Holococus hippophaecolus) in China: The role of outbreak events, geographical and host factors[J]. Plos One, 2012, 7 (1): 1-9
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3114) PDF downloads(1184) Cited by()

Proportional views

Genetic Relationship between Holcocerus hippophaecolust and H. vicarious Based on CO Ⅰ、CO Ⅱ and Cyt b Genes

  • 1. Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
  • 2. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 100026, China

Abstract: Holcocerus hippophaecolust and H. vicarious are closely related species of Holcocerus (Lepidoptera: Cossidae). It is difficult to distinguish them based on morphological characters. This research aims to explore the genetic relationship between H. hippophaecolust and H. vicarious from various populations based on partial mitochondrial DNA (mtDNA) CO Ⅰ, CO Ⅱ and Cyt b genes. The genetic distance between H. hippophaecolust and H. vicarious was only 0.009,0.001 and 0.062 for CO Ⅰ, CO Ⅱ and Cyt b, respectively, which were found close to the mean conspecific divergence and much lower than the mean congeneric genetic distance. The genetic distance estimated in this study showed highly genetic similarity between the two insect species. 6 of 24 total haplotypes are observed as shared haplotypes in 3 mtDNA genes of 2 insect species. Shared haplotypes happened among different populations suggest that the two species are not fully differentiation. Phylogenetic analysis of seven Cossidae species indicates that H. hippophaecolust and H. vicarious formed complex instead of independent branches in all 3 phylogenetic trees. We discussed the possible evolutionary relationship between H. hippophaecolust and H. vicarious based on our current results.

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return