• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Influences of Drought Stress on Photosynthetic Characteristics and Water Use Efficiency of 4 Tree Species under Elevated CO2 Concentration

  • Received Date: 2014-04-01
  • Five-year-old Pinus tabulaeformis and Platycladus orientalis and three-year-old Acer truncatum and Robinia pseudoacacia saplings were exposed to 720 μmol·mol-1 CO2 for 13 months. The leaf photosynthetic ratio (Pn), internal CO2 concentration (Ci), transpiration ratio (Tr) and stomatal conductance (Cond) were measured by Li-6400. The leaf carbon isotope ratio (δ13C) was measured by Isotope Ratio Mass Spectrometer. Under normal water and heavy drought conditions, the Pn, Ci and WUEi of the 4 tree species increased, while the Tr and Cond reduced along with the CO2 concentration. Under mild drought and moderate drought conditions, the Pn, Ci, Tr, Cond and WUEi increased along with CO2 concentration. The WUEi of R. pseudoacacia under 720 μmol·mol-1 CO2 concentration reduced along with CO2 concentration under mild drought, moderate drought and heavy drought conditions. In the same drought condition, the leaf δ13C values increased along with CO2 concentration. The Pn, Tr and Cond reduced along with drought condition. The leaf WUEi and δ13C values of the 4 tree species increased under 720 μmol·mol-1 CO2 concentration, while A. truncatum and R. pseudoacacia under 380 μmol·mol-1 CO2 concentration increased under mild drought and moderate drought conditions and then reduced under heavy drought condition. The interaction of elevated CO2 concentration and drought stress decreased the sensitivity of stomata, which changed quickly under elevated CO2 concentration or drought stress, and postponed the occurrence of drought stress.
  • 加载中
  • [1]

    Long S P, Ainsworth E A, Rogers A, et al. Rising atmospheric carbon dioxide: Plants FACE the future[J]. Annual Review of Plant Biology, 2004, 55: 591-628.
    [2]

    Bobich E G, Barron-Gafford G A, Rascher K G, et al. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2 [J]. Tree physiology, 2010, 30(7): 866-875.
    [3]

    Streit K, Siegwolf R T W, Hagedorn F, et al. Lack of photosynthetic or stomatal regulation after 9 years of elevated[CO2] and 4 years of soil warming in two conifer species at the alpine treeline[J]. Plant, Cell and Environment, 2014, 37: 315-326.
    [4] 李永华, 王献, 孔德政, 等. 长期CO2加富对苗期红掌(Anthurium andraeanum L.)植株生长和光合作用的影响[J]. 生态学报, 2007, 27 (5): 1852-1857.

    [5]

    Springer C J, Thomas R B. Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment[J]. Tree Physiology, 2007, 27(1): 25-32.
    [6]

    Xu Z, Shimizu H, Ito S, et al. SEffects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland[J]. Planta, 2014, 239: 421-435.
    [7]

    Keenan T F, Hollinger D Y, Bohrer G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499(7458): 324-327.
    [8]

    Qaderi M M, Kurepin L V, Reid D M. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: Temperature, carbon dioxide and drought[J]. Physiologia Plantarum, 2006, 128(4): 710-721.
    [9]

    Kaiser W M. Effect of water deficit on photosynthetic capacity[J]. Physiologia Plantarum, 1987, 71(1): 142-149.
    [10]

    Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiology, 2001, 126(3): 1196-1204.
    [11] 王荣荣, 夏江宝, 杨吉华. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报, 2013, 37(2): 111-121.

    [12] 曾伟, 蒋延玲, 李峰, 等. 蒙古栎(Quercus mongolia)光合参数对水分胁迫的响应机理[J]. 生态学报, 2008, 28(6): 2504-2510.

    [13] 严昌荣, 韩兴国, 陈灵芝. 六种木本植物水分利用效率和其小生境关系研究[J]. 生态学报, 2001, 21(11): 1952-1956.

    [14]

    Bohn B A, Kershner J L. Establishing aquatic restoration priorities using a watershed approach[J]. Journal of Environmental Management, 2002, 64: 355-363.
    [15]

    Ebdon J S, Petrovic A M, Dawson T E. Relationship between carbon isotope discrimination, water use efficiency and evapotranspiration in Kentucky blue grass[J]. Crop Science, 1998, 38: 157-162.
    [16]

    Arslan A, Zapata F, Kumarasinghe K S. Carbon isotope discrimination as indicator of water use efficiency of spring wheat as affected by salinity and gypsum additions[J]. Communications in Soil Science and Plant Analysis, 1999, 30: 2681-2693.
    [17] 任书杰, 于贵瑞. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J]. 植物生态学报, 2011, 35(2): 119-124.

    [18] 李吉跃, 周平, 招礼军. 干旱胁迫对苗木蒸腾耗水的影响[J]. 生态学报, 2002, 22(9): 1380-1386.

    [19] 招礼军, 李吉跃, 于界芬, 等. 干旱胁迫对苗木蒸腾耗水日变化的影响[J]. 北京林业大学学报, 2003, 25(3): 42-47.

    [20] 刘娟娟, 李吉跃. CO2浓度增加对苗木生长和养分含量的影响[J]. 福建林学院学报, 2008, 28(2): 184-189.

    [21]

    Scholander P F. A pressure in vascular plants[J].Science, 1965, 148: 339-346.
    [22]

    Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Plant Physiology, 1982, 9: 121-137.
    [23] 刘娟娟, 李吉跃, 庞静. CO2浓度倍增与干旱胁迫对油松(Pinus tabulaeformis)相对分枝级水力结构的影响[J]. 生态学报, 2009, 28(9): 4136-4143.

    [24]

    Ellsworth D S, Thomas R, Crous K Y, et al. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years[J]. Global Change Biology, 2012, 18(1): 223-242.
    [25]

    Woodward F I, Bazzaz F A. The responses of stomatal density to CO2 partial pressure[J]. Journal of Experimental Botany, 1988, 39: 1771-1781.
    [26]

    Beerling D J, Chaloner W G. The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur Lammas leaves[J]. Annals of Botany, 1993, 71: 231-235.
    [27]

    Kimball B A, Kobayashi K, Bindi M. Responses of agricultural crops to free-air CO2 enrichment[J]. Advance in Agronomy, 2002, 77: 293-368.
    [28]

    Gesch R W, Kang I H, Gallo-Meagher M, et al. Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO2 and temperature[J]. Plant, Cell and Environment, 2003, 26: 1941-1950.
    [29] 蒋高明. 全球大气二氧化碳浓度升高对植物的影响[J]. 植物学通报, 1995, 12(4): 1-7.

    [30] 郑凤英, 彭少麟, 赵平. 两种山黄麻属植物在近一世纪里气孔密度和潜在水分利用效率的变化[J]. 植物生态学报, 2001, 25(4): 405-409.

    [31]

    Williams D G, Gempko V, Fravolini A, et al. Carbon isotope discrimination by Sorghum biocolor under CO2 enrichment and drought[J]. New Phytologist, 2001, 150: 285-293.
    [32] 赵凤君, 高荣孚, 沈应柏, 等. 水分胁迫下美洲黑杨不同无性系间叶片δ13C和水分利用效率的研究[J]. 林业科学, 2005, 41(1): 36-41.

    [33]

    O'Leary M H. Carbon isotope fractionation in plants[J]. Phytochemistry, 1981, 20: 553-567.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(2802) PDF downloads(937) Cited by()

Proportional views

Influences of Drought Stress on Photosynthetic Characteristics and Water Use Efficiency of 4 Tree Species under Elevated CO2 Concentration

  • 1. Research Institute of Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Breeding and Cultivation, State Forestry Administration, Beijing 100091, China
  • 2. College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, Guangdong, China

Abstract: Five-year-old Pinus tabulaeformis and Platycladus orientalis and three-year-old Acer truncatum and Robinia pseudoacacia saplings were exposed to 720 μmol·mol-1 CO2 for 13 months. The leaf photosynthetic ratio (Pn), internal CO2 concentration (Ci), transpiration ratio (Tr) and stomatal conductance (Cond) were measured by Li-6400. The leaf carbon isotope ratio (δ13C) was measured by Isotope Ratio Mass Spectrometer. Under normal water and heavy drought conditions, the Pn, Ci and WUEi of the 4 tree species increased, while the Tr and Cond reduced along with the CO2 concentration. Under mild drought and moderate drought conditions, the Pn, Ci, Tr, Cond and WUEi increased along with CO2 concentration. The WUEi of R. pseudoacacia under 720 μmol·mol-1 CO2 concentration reduced along with CO2 concentration under mild drought, moderate drought and heavy drought conditions. In the same drought condition, the leaf δ13C values increased along with CO2 concentration. The Pn, Tr and Cond reduced along with drought condition. The leaf WUEi and δ13C values of the 4 tree species increased under 720 μmol·mol-1 CO2 concentration, while A. truncatum and R. pseudoacacia under 380 μmol·mol-1 CO2 concentration increased under mild drought and moderate drought conditions and then reduced under heavy drought condition. The interaction of elevated CO2 concentration and drought stress decreased the sensitivity of stomata, which changed quickly under elevated CO2 concentration or drought stress, and postponed the occurrence of drought stress.

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return