• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Screening, Identification and Phosphate Solubilizing Capability of Phosphate Solubilizing Bacteria in Rhizosphere of Camellia oleifera Abel at Red Soil Region

  • Received Date: 2014-09-01
  • The phosphate solubilizing capability of phosphate solubilizing bacteria (PSB) in rhizosphere of Camellia oleifera Abel apparently affects the Phosphorus use efficiency in red soil. 97 phosphate-solubilizing bacterial strains were isolated from the Camellia oleifera rhizosphere soil of Hu'nan Province, the high effective PSB were further screened using NBRI-BPB medium, and the molybdenum-anti-spectrophotometric method was applied to determine the phosphate-dissolving ability of the high effective PSB after four days' fermentation in NBRIP medium. The bacteria were identified by their morphological, physiological and biochemical characteristics with Biolog system and 16S rDNA gene sequence analysis. The high effective PSB of WB38, WB39 (WB75), WB53 (WB68) were identified as Pseudomonas auricularis, Pectobacterium cypripedii, and Enterobacter ludwigii, respectively. Experiments were conducted to study the phosphate-solubilizing capability of WB38 under different culture conditions. Every factor has a significant influence on phosphate-solubilizing ability of WB38, and the greatest influence factor on phosphate-solubilizing ability was the temperature. The optimum carbon source and nitrogen source were glucose and NH4NO3. WB38 displayed a better phosphate-solubilizing capability at the temperature of 28℃, the medium initial pH was 6.5, the inoculation quantity was 1% and the aeration quantity was 25 mL.
  • 加载中
  • [1] 何方, 何柏. 油茶栽培分布与立地分类的研究[J]. 林业科学, 2002, 38(5): 64-72.

    [2] 沈兴亮, 焦如珍. 细菌肥料对油茶幼林生长的影响[J]. 林业科学研究, 2014, 27(4): 570-574.

    [3] 王斌, 王开良, 童杰洁, 等. 我国油茶产业现状及发展对策[J]. 林业科技开发, 2011, 2: 11-15.

    [4] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615-7622.

    [5] 孙波, 张桃林, 赵其国. 南方红壤丘陵地区土壤养分贫瘠化的综合评价[J]. 土壤, 1995, 27(3): 119-128.

    [6] 胡月明, 欧阳村香, 戴军, 等. 我国红壤资源农业利用研究进展. 土壤与环境, 1999, 8(1): 53-57.

    [7] 赵小蓉, 林启美. 微生物解磷的研究进展[J]. 土壤肥料, 2001, 5(3): 7-11.

    [8]

    Abd-Alla M H. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarumbiovar viceae. [J]. Letters in Applied Microbiology, 1994, 18(5): 294-296.
    [9] 谢林花, 吕家珑, 张一平, 等. 长期施肥对石灰性土壤磷素肥力的影响Ⅰ.有机质、全磷和速效磷[J]. 应用生态学报, 2004, 15 (5): 787-789.

    [10] 朱培淼, 杨兴明, 徐阳春, 等. 高效解磷细菌的筛选及其对玉米苗期生长的促进作用[J]. 应用生态学报, 2007, 18(1): 107-112.

    [11] 盛荣, 肖和艾, 谭周进, 等. 土壤解磷微生物及其磷素有效性转化机理研究进展[J]. 土壤通报, 2010, 41(6): 1505-1510.

    [12] 孙珊, 黄星, 范宁杰, 等. 一株溶磷细菌的分离、鉴定及其溶磷特性研究[J]. 土壤, 2010, 42(1): 117-122.

    [13]

    Chung H, Park M, Madhaiyan M, et al. Isolation and characterization of phosphatesolubilizing bacteria from the rhizosphere of crop plants of Korea.Soil Biology & Biochemistry, 2005, 37: 1970-1974.
    [14]

    Peix A, Rivas-Boyero AA, Mateos PF, et al. Growth promotion of chickpea and barely by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions[J]. Soil Biology and Biochemistry, 2001, 33: 103-110.
    [15]

    Zaidi A, Khan MS, Amil M. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea ( Cicerarietinum L.) [J]. European Journal of Agronomy, 2003, 19: 15-21.
    [16] 鲁如坤. 土壤农业化学分析方法(第一版)[M]. 北京:中国农业科技出版社, 2000, 26: 147-159.

    [17]

    Mehta S, Nautiyal C S. An efficient method for qualitative screening of phosphate solubilizing bacteria[J]. Current microbiology, 2001, 43(1): 51-56.
    [18] 任嘉红, 刘辉, 吴晓蕙, 等. 南方红豆杉根际溶无机磷细菌的筛选、鉴定及其促生效果[J]. 微生物学报, 2012, 53(3): 295-303.

    [19]

    Kundu B S, Nehra K, Yadav R, et al. Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana[J]. Indian journal of microbiology, 2009, 49(2): 120-127.
    [20] 李娟, 王文丽, 卢秉林, 等. 甘肃省河西高钙土溶磷菌筛选及其溶磷能力初步研究[J]. 干旱地区农业研究, 2008, 26(2): 8-9.

    [21] Buchana RE, Gibbons NE. 伯杰细菌鉴定手册. 中国科学院微生物研究所译. 北京:科学出版社, 1984.

    [22]

    Sambrook J, Fritsch ED, Maniatis T. Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York. 2001.
    [23] 胡子全, 赵海泉. 一株有机解磷菌的筛选及其最佳生长条件的研究[J]. 中国给水排水, 2007, 23 (17): 66-70.

    [24] 王金玲, 刘晓平, 赵凤艳, 等. 解磷巨大芽孢杆菌液体发酵培养条件的优化[J]. 中国农学通报, 2013, 29(15): 68-72.

    [25] 韩烁, 夏冬亮, 李潞滨, 等. 毛竹根部解磷细菌的筛选及多样性研究[J]. 河北农业大学学报, 2010, 33(2): 26-31.

    [26] 王岳坤, 于飞, 唐朝荣. 海南生态区植物根际解磷细菌的筛选及分子鉴定[J]. 微生物学报, 2009, 49(1): 64-71.

    [27] 陈俊, 陆俊锟, 康丽华, 等. 红树林溶磷菌的初步鉴定、溶磷能力测定及其优化培养[J]. 微生物学通报, 2009, 36(8): 1183-1188.

    [28] 刘聪, 林维, 孙珑, 等. 黑土区林地土壤高效解磷细菌的分离、筛选及其解磷效果[J]. 东北林业大学学报, 2013, 41(11): 83-85+122.

    [29] 刘雪红, 张丽燕, 范延辉, 等. 沾化冬枣根际解无机磷细菌的分离、鉴定及其在土壤中溶磷效果的研究[J]. 华北农学报, 2013, 28(3): 204-209.

    [30] 易艳梅, 黄为一. 产多糖溶磷细菌对难溶性Ca-P的活化特性[J]. 南京农业大学学报, 2008, 31(2): 49-54.

    [31] 贺梦醒, 高毅, 胡正雪, 等. 解磷菌株B25的筛选、鉴定及其解磷能力[J]. 应用生态学报, 2012, 23(1): 235-239.

    [32]

    Narsha N, Patel HH. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biochemistry, 2000, 32: 559-565.
    [33]

    Thomas G V. Occurrence and ability of phosphate solubilizing fungi from coconut plant soils[J]. Plant and Soil, 1985, 87: 357-364.
    [34] 杨慧, 范丙全, 龚明波, 等. 一株新的溶磷草生欧文氏菌的分离、鉴定及其溶磷效果的初步研究[J]. 微生物学报, 2008, 48 (1): 51-56.

    [35]

    Illmer P. Solubilization of inorganic calcium phosphates solubilization mechanisms[J]. Soil Biol.Biochem, 1995, 27(3): 257-263.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3022) PDF downloads(1115) Cited by()

Proportional views

Screening, Identification and Phosphate Solubilizing Capability of Phosphate Solubilizing Bacteria in Rhizosphere of Camellia oleifera Abel at Red Soil Region

  • 1. College of Landscape and Art, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China

Abstract: The phosphate solubilizing capability of phosphate solubilizing bacteria (PSB) in rhizosphere of Camellia oleifera Abel apparently affects the Phosphorus use efficiency in red soil. 97 phosphate-solubilizing bacterial strains were isolated from the Camellia oleifera rhizosphere soil of Hu'nan Province, the high effective PSB were further screened using NBRI-BPB medium, and the molybdenum-anti-spectrophotometric method was applied to determine the phosphate-dissolving ability of the high effective PSB after four days' fermentation in NBRIP medium. The bacteria were identified by their morphological, physiological and biochemical characteristics with Biolog system and 16S rDNA gene sequence analysis. The high effective PSB of WB38, WB39 (WB75), WB53 (WB68) were identified as Pseudomonas auricularis, Pectobacterium cypripedii, and Enterobacter ludwigii, respectively. Experiments were conducted to study the phosphate-solubilizing capability of WB38 under different culture conditions. Every factor has a significant influence on phosphate-solubilizing ability of WB38, and the greatest influence factor on phosphate-solubilizing ability was the temperature. The optimum carbon source and nitrogen source were glucose and NH4NO3. WB38 displayed a better phosphate-solubilizing capability at the temperature of 28℃, the medium initial pH was 6.5, the inoculation quantity was 1% and the aeration quantity was 25 mL.

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return