• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Comprehensive Evaluation on Drought Resistance of Hippophea rhamnoides

  • Received Date: 2014-11-05
  • The drought resistance of Hippophea rhamnoides relates to the effects of multiple factors. It is one-sided to evaluate its resistance using single factor (single indicator). The drought resistance based on physiological and chemical indices in four H. rhamnoides species was evaluated by principal components analysis and subordinate function analysis. The results showed that the native species (H. rhamnoides ssp. Sinensis, Fengning; FN) had the strongest drought resistance compared with the other three exotic species (H. rhamnoides ssp. Mongolia, Xianyang, XY; H. rhamnoides ssp. Mongolia, Chuyi, CY; and H. rhamnoides ssp. Mongolia, Wulangemu,WL). The H. rhamnoides L. Wulangemu had the weakest drought resistance. And the capacity of drought resistance of the four species is gauged as follows: FN (0.619) > CY (0.445) > XY (0.390) > WL (0.274). It was also found that the net photosynthetic rate, transpiration rate, stomatal conductance, leaf water potential, glutathione reductase and ABA content could be used as the indicators to determine the drought resistance. In addition, with the increasing of drought stress, the net photosynthetic rate, transpiration rate, stomatal conductance, water potential decreased, while the catalase activity, cell membrane permeability, glutathione reductase and the four kinds of hormones increased. This implies that the growth and development process of H. rhamnoides was affected under the drought stress, and they increased their own resistant ability through the internal physiological and chemical indicators changing. These will provide a scientific basis for drought-resistant species selection and cross-breeding of H. rhamnoides.
  • 加载中
  • [1] 廉永善,陈学林. 沙棘属植物的系统分类[J]. 沙棘, 1996, 9(1):15-24.

    [2] 刘朵花,李建辉,吴 伸. 沙棘果肉和叶中黄酮类化合物组分的比较研究[J]. 沙棘, 1999, 12(3):28-30.

    [3]

    Beveridge T, Li T S C, Oomah B D, et al. Sea buckthorn products:manufacture and composition[J]. Journal of Agricultural and Food Chemistry, 1999, 47(9):3480-3488.
    [4]

    Li C Y, Yang Y Q, Junttila O. Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes[J]. Plant Science, 2005,168(5):1365-1370.
    [5]

    Yang B, Kallio H, Yang B. Fatty Acid Composition of Lipids in Sea Buckthorn (Hippophae rhamnoides L.) Berries of Different Origins[J]. Journal of Agricultural and Food Chemistry, 2001, 49(4):1939-1941.
    [6]

    Zeb A. Chemical and Nutritional Constituents of Sea Buckthorn Juice[J]. Pakistan Journal of Nutrition, 2004, 3(2):99-106.
    [7]

    Zeb A, Malook I. Biochemical characterization of sea buckthorn (Hippophae rhamnoides L. spp. turkestanica) seed[J]. African Journal of Biotechnology, 2009, 8(8):1625-1629.
    [8] 李晓燕,王林和,李连国,等. 沙棘茎的形态解剖特征与其生态适应性研究[J]. 干旱区资源与环境, 2008, 22(3):188-191.

    [9] 韩蕊莲, 李丽霞, 梁宗锁. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J]. 西北植物学报, 2003, 23(1):23-27.

    [10] 阮成江,李代琼. 黄土丘陵区沙棘林几个水分生理生态特征研究[J]. 林业科学研究, 2002, 15(1):47-53.

    [11] 吴 林,李亚东,刘洪章,等. 水分逆境对沙棘生长和叶片光合作用的影响[J]. 吉林农业大学学报, 1996,18(4):45-49.

    [12] 刘瑞香,杨 劼,高 丽. 中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J]. 水土保持学报, 2005, 19(3):148-169.

    [13] 张建国,段爱国,张俊佩,等. 不同品种大果沙棘种子特性研究[J]. 林业科学研究,2006, 19(6):700-705.

    [14] 张建国,段爱国,罗红梅,等. 大果沙棘不同品种的生长性状及其与产量的相关分析[J]. 林业科学研究,2007, 20(6):794-800.

    [15] 张建国,段爱国,黄 铨,等. 大果沙棘品种适应性及其综合评价[J]. 林业科学研究, 2007, 20(1):10-14.

    [16] 高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006.

    [17] 何钟佩. 农作物化学控制实验指导[M]. 北京:北京农业大学出版社,1997.

    [18] 于秀林, 任雪松. 多元统计分析[M]. 北京:中国统计出版社, 1999.

    [19] 林海明, 张文霖. 主成分分析与因子分析详细的异同和SPSS 软件[J]. 统计研究, 2005(3):24-26.

    [20] 李代琼. 半干旱黄土区沙棘的水分生理生态与形态解剖学特性研究[J]. 沙棘,1999,12(3):11-16.

    [21] 土小守,何振祥,曹 峰. 沙棘几个抗旱生理指标的测定与分析[J]. 沙棘, 1991(3):36-38.

    [22] 韩蕊莲,梁宗锁,邹厚远. 在土壤干旱条件下沙棘耗水特性的初步研究[J]. 沙棘, 1991(4):33-38.

    [23] 杨 劼,李国强,曹 云. 皇甫川流域中国沙棘光合特征分析[J]. 水土保持学报, 2004, 18(2):148-151.

    [24] 裴 斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5):1386-1396.

    [25] 夏江宝, 张光灿, 孙景宽, 等. 山杏叶片光合生理参数对土壤水分和光照强度的阈值效应[J]. 植物生态学报, 2011, 35(3):322-329.

    [26]

    Steduto P, Katerji N, Puertos-Molina H, et al. Water-use efficiency of sweet sorghum under water stress conditions Gas-exchange investigations at leaf and canopy scales[J]. Field crops research, 1997, 54(2):221-234.
    [27] 蒋明义, 荆家海, 王韶唐. 水分胁迫与植物膜脂过氧化[J]. 西北农业大学学报, 1991, 19(2):88-94.

    [28]

    Sohrabi Y, Heidari G, Weisany W, et al. Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress[J]. Symbiosis, 2012, 56(1):5-18.
    [29]

    Foyer CH, Descourvieres P, Kunert K J. Protection again stoxygen radicals:important defense mechanism studied in transgenic plants[J]. Plant, Cell and Environment, 1994, 17:507-523.
    [30]

    Bowler C, Van Montagu C, Inzé D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43:83-116.
    [31] 王学臣, 任海云, 娄成后. 干旱胁迫下植物根与地上部间的信息传递[J]. 植物生理学通讯, 1992, 28(6):397-402.

    [32]

    Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual review of plant biology, 1991, 42(1):55-76.
    [33] 严 寒, 许本波, 赵福永, 等. 脱落酸和水杨酸对干旱胁迫下芝麻幼苗生理特性的影响[J]. 干旱地区农业研究, 2008, 26(6):163-166.

    [34] 李长宁, 农 倩, 李杨瑞. 水分胁迫下外源 ABA 提高甘蔗抗旱性的作用机制[J]. 作物学报, 2010, 36(5):863-870.

    [35] 汪月霞, 索 标, 赵鹏飞, 等. 外源 ABA 对干旱胁迫下不同品种灌浆期小麦 psbA 基因表达的影响[J]. 作物学报, 2011, 37(8):1372-1377.

    [36] 胡秀丽, 杨海荣, 李潮海. ABA 对玉米响应干旱胁迫的调控机制[J]. 西北植物学报, 2009 (11):2345-2351.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(2799) PDF downloads(1079) Cited by()

Proportional views

Comprehensive Evaluation on Drought Resistance of Hippophea rhamnoides

  • 1. Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
  • 2. Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, Inner Mongolia, China
  • 3. Collaborative-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China

Abstract: The drought resistance of Hippophea rhamnoides relates to the effects of multiple factors. It is one-sided to evaluate its resistance using single factor (single indicator). The drought resistance based on physiological and chemical indices in four H. rhamnoides species was evaluated by principal components analysis and subordinate function analysis. The results showed that the native species (H. rhamnoides ssp. Sinensis, Fengning; FN) had the strongest drought resistance compared with the other three exotic species (H. rhamnoides ssp. Mongolia, Xianyang, XY; H. rhamnoides ssp. Mongolia, Chuyi, CY; and H. rhamnoides ssp. Mongolia, Wulangemu,WL). The H. rhamnoides L. Wulangemu had the weakest drought resistance. And the capacity of drought resistance of the four species is gauged as follows: FN (0.619) > CY (0.445) > XY (0.390) > WL (0.274). It was also found that the net photosynthetic rate, transpiration rate, stomatal conductance, leaf water potential, glutathione reductase and ABA content could be used as the indicators to determine the drought resistance. In addition, with the increasing of drought stress, the net photosynthetic rate, transpiration rate, stomatal conductance, water potential decreased, while the catalase activity, cell membrane permeability, glutathione reductase and the four kinds of hormones increased. This implies that the growth and development process of H. rhamnoides was affected under the drought stress, and they increased their own resistant ability through the internal physiological and chemical indicators changing. These will provide a scientific basis for drought-resistant species selection and cross-breeding of H. rhamnoides.

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return