• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 34 Issue 6
Dec.  2021
Article Contents
Turn off MathJax

Citation:

Electroantennogram and Behavioral Responses of Dioryctria abietella to Volatiles from Picea likiangensis var. linzhiensis Cones

  • Received Date: 2021-04-08
    Accepted Date: 2021-06-19
  • Objective To screen the cone volatiles in the cones of Picea likiangensis var. linzhiensis, which have an attractive effect on the Dioryctria abietella, in order to clarify the host selection mechanism of D. abietella and provide a theoretical basis for the pest-free control of pests. Method Electroantennography (EAG) and "Y" olfactometer were used to measure the EAG reaction and olfactory behavior of D. abietella to the main components of the cone volatiles of P. likiangensis var. linzhiensis with different concentrations and formulations. Result The results of GC-MS showed that the healthy new cones and the infested old cones contained six compounds, but the composition and content were slightly different. The results of EAG showed that in the range of 10 μg·μL−1, the higher the concentration of α-pinene, β-pinene, (1S)-(-)-β-pinene, limonene, the bigger the EAG response of the D. abietella in different states. However, the EAG value decreased after 10 μg·μL−1. Under the concentration of 10 μg·μL−1, the EAG value of the moth in different states was significantly higher than under the other concentrations (P < 0.05). The EAG reaction of unmated female and male moths on beta-caryophyllene increased with the concentration, and the EAG reaction value in 0.5 μg·μL−1 was not significantly different from the control (P > 0.05). After reaching 1 μg·μL−1, no significant difference was found in the EAG value among concentrations (P > 0.05), while the EAG reaction between 0.5 μg·μL−1 and 1 μg·μL−1 was significantly different (P < 0.05). The EAG response of the mated female moth and the unmated female moth to myrcene increased with the concentration. When the concentration reached 100 μg·μL−1, the EAG value was the largest, nevertheless the EAG value of 100 μg·μL−1 and 10 μg·μL−1 was not significantly different (P > 0.05). The results of olfactory behavior showed that formula A2, A3, A5, A7 and A8 had obvious attracting effect, especially formula A7, and the attracting rate of D. abietella in different states was over 70%. Unfortunately, formula A4, A9, A10 had obvious avoidance effect, and the avoidance rate of D. abietella in different states was as high as 50%~70%. Conclusion 10 μg·μL−1 of each component is the best stimulation concentration. Beta-caryophyllene has obvious attracting effect, while myrcene has obvious avoidance effect.
  • 加载中
  • [1]

    Bruce T J A, Wadhams L J, Woodcock C M. Insect host location: a volatile situation[J]. Trends in Plant Science, 2005, 10(10): 269-274.
    [2]

    Dotterl S, David A, Boland W, et al. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae[J]. Journal of Chemical Ecology, 2012, 38(12): 1539-1543. doi: 10.1007/s10886-012-0210-y
    [3]

    Bernays E A, Chapman R F. Host-plant Selection by Phytophagous Insects [M]. Chapman and Hall, New York, 1994: 61-94.
    [4]

    Sun X L, Wang G C, Gao Y, et al. Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths[J]. Journal of Chemical Ecology, 2014, 40(10): 1080-1089. doi: 10.1007/s10886-014-0502-5
    [5] 闫凤鸣. 化学生态学(第二版)[M]. 北京: 科学出版社, 2011: 44-85.

    [6]

    Knolhoff L M, Heckel D Q. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects[J]. Annual Review of Entomology, 2014, 59(1): 263-278. doi: 10.1146/annurev-ento-011613-161945
    [7]

    Ahman I, Wiersma N, Lindstrom M. Electroantennogram responses in Cydia strobilella (L.) (Lep., Tortricidae) to flower and twig odors of its host Picea abies (L.)Karst[J]. Journal of Applied Entomology, 1988, 105: 314-316. doi: 10.1111/j.1439-0418.1988.tb00192.x
    [8]

    Ross D W, Birgersson G, Espelie K E, et al. Monoterpene emissions and cuticular lipids of loblolly and slash pines: Potential basis for oviposition preference of the Nantucket pine tip moth[J]. Canadian Journal Botany, 1995, 73: 21-25. doi: 10.1139/b95-003
    [9] 杨立军, 李新岗. 松果梢斑螟对油松球果挥发物的触角电位反应[J]. 林业科学, 2011, 47(1):172-176. doi: 10.11707/j.1001-7488.20110126

    [10]

    Shu S, Grant G G, Langevin D A, et al. Oviposition and ecectroantennogram responses of Dioryctria abietivorella (Lepidoptera: Pyralidae) elicited by monoterpenes and enantiomers from estern white pine[J]. Journal of Chemical Ecology, 1997, 23(1): 35-50. doi: 10.1023/B:JOEC.0000006344.18966.c6
    [11]

    Kleinhentz M, Jactel H, Menassieu P. Terpene attractant candidates of Dioryctria sylvestrella in maritime pine(Pinus pinaster) oleoresin, needles, liber, and headspace samples[J]. Journal of Chemical Ecology, 1999, 25(12): 2741-2756. doi: 10.1023/A:1020803608406
    [12] 李新岗, 刘惠霞, 刘拉平, 等. 影响松果梢斑螟寄主选择的植物挥发物成分研究[J]. 林业科学, 2006, 42(6):71-78. doi: 10.3321/j.issn:1001-7488.2006.06.013

    [13]

    Jactel H, Menassieu P, Raise G. Infestation dynamics of Dioryctria sylvestrella (Ratz.) (Lepidoptera: Pyralidae) in pruned maritime pine (Pinus pinaster Act.)[J]. For Ecol Manage, 1994, 67: 11-22. doi: 10.1016/0378-1127(94)90003-5
    [14]

    Herve J, Marc K, Anne M, et al. Terpene variations in maritime pine constitutive oleoresin related to host tree selection by Dioryctria sylvestrella Ratz. (Lepidoptera: Pyralidae)[J]. Journal of Chemical Ecology, 1996, 22(5): 1037-1050. doi: 10.1007/BF02029953
    [15] 李新岗. 油松球果害虫危害机理研究[J]. 西北农林科技大学学报, 2002, 30(2):78-82.

    [16]

    Strong W B, Millar J G, Grant G G, et al. Optimization of pheromone lure and trap design for monitoring the fir cone worm, Dioryctria abietivorella[J]. Entomologia Experimentalis et Applicata, 2008, 126(1): 67-77.
    [17] 唐晓琴, 臧建成, 任毅华, 等. 藏东南主要针叶林球果害虫种类及危害情况调查[J]. 中国森林病虫, 2019, 38(1):31-34.

    [18] 唐晓琴, 任毅华, 臧建成, 等. 冷杉梢斑螟在林芝云杉上的生物学特性[J]. 林业科学研究, 2019, 32(2):60-64.

    [19]

    Xiaoqin Tang, Tan Gao, Jie Lu, et al. Relationship between volatile compounds of Picea likiangensis var. linzhiensis cone and host selection of Dioryctria abietella [J]. Archives of Insect Biochemistry and Physiology, 2020, DOI: 10.1002/arch.21733
    [20] 王茹琳, 杨 伟, 杨佐忠, 等. 华山松大小蠢对几种寄主挥发物组分的EAG和行为反应[J]. 生态学杂志. 2011, 30(4): 724-729.

    [21] 阎雄飞, 刘永华, 李 刚, 等. 枣飞象对枣树七种挥发物EAG和嗅觉行为反应[J]. 应用昆虫学报, 2017, 54(4):621-628.

    [22] 严善春, 杨 慧, 高璐璐, 等. 兴安落叶松鞘蛾对寄主挥发物的反应[J]. 林业科学, 2009, 45(5):95-101.

    [23] 尹 姣, 曹雅忠, 罗礼智, 等. 草地螟对寄主植物的选择性及其化学生态机制[J]. 生态学报, 2005, 25(8):1844-1852. doi: 10.3321/j.issn:1000-0933.2005.08.003

    [24]

    Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001, 291: 2141-2144. doi: 10.1126/science.291.5511.2141
    [25] 王 琪, 彭 璐, 严善春, 等. 松梢象对红松萜烯类挥发物的触角电位及行为反应[J]. 北京林业大学学报, 2011, 33(4):91-95.

    [26] 李为争, 杨 雷, 申小卫, 等. 金龟甲对蓖麻叶挥发物的触角电位和行为反应[J]. 生态学报, 2013, 33(21):6895-6903.

    [27] 邢 亚, 迟德富, 宇 佳, 等. 杨干象对12种植物挥发物的电生理及行为反应[J]. 林业科学, 2017, 53(6):159-167. doi: 10.11707/j.1001-7488.20170619

    [28] 陈 琳. 植物挥发物与雌蛾性腺提取物对分月扇舟蛾成虫行为的影响[D]. 南昌: 江西农业大学, 2014.

    [29]

    Visser J H, Thiery D. Effects of feeding experience on the odour-conditioned anemo taxes of colorado beetles[J]. Entomologia Experimentaliset Applicata, 1986, 42: 198-200.
    [30]

    Barata E N, Mustaparata H, Pickentt J A, et al. Encoding of host and non-host plantodours by receptor neurons in the eucalyptus woodborer, Phoracantha semipunctata (Coleoptera: Cerambycidae)[J]. Journal of Computational Physics, 2002, 188(2): 121-133. doi: 10.1007/s00359-002-0282-1
    [31] 杨 慧. 兴安落叶松鞘蛾对寄主挥发物的反应及其触角感器研究[D]. 哈尔滨: 东北林业大学, 2008.

    [32] 刘胜英. 落叶松毛虫对落叶松挥发性化合物的诱导与利用[D]. 哈尔滨: 东北林业大学, 2006.

    [33] 王延福. 花椒窄吉丁对其高发期寄主果实挥发物的触角电位和行为反应[D]. 杨凌: 西北农林科技大学, 2019.

    [34] 袁丽芳. 花椒窄吉丁对寄主挥发物化学感受机制的初步研究[D]. 杨凌: 西北农林科技大学, 2016.

    [35] 张 振. 化学生态技术调控青杨脊虎天牛种群基础研究[D]. 哈尔滨: 东北林业大学, 2011.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(7)

Article views(3703) PDF downloads(39) Cited by()

Proportional views

Electroantennogram and Behavioral Responses of Dioryctria abietella to Volatiles from Picea likiangensis var. linzhiensis Cones

  • 1. Plant Sciences College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
  • 2. Research Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
  • 3. Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture & Animal Husbandry University), Ministry of Education, Nyingchi 860000, Tibet, China
  • 4. Laboratory of Resource and Applied Insects in the Tibet Plateau, Nyingchi 860000, Tibet, China

Abstract:  Objective To screen the cone volatiles in the cones of Picea likiangensis var. linzhiensis, which have an attractive effect on the Dioryctria abietella, in order to clarify the host selection mechanism of D. abietella and provide a theoretical basis for the pest-free control of pests. Method Electroantennography (EAG) and "Y" olfactometer were used to measure the EAG reaction and olfactory behavior of D. abietella to the main components of the cone volatiles of P. likiangensis var. linzhiensis with different concentrations and formulations. Result The results of GC-MS showed that the healthy new cones and the infested old cones contained six compounds, but the composition and content were slightly different. The results of EAG showed that in the range of 10 μg·μL−1, the higher the concentration of α-pinene, β-pinene, (1S)-(-)-β-pinene, limonene, the bigger the EAG response of the D. abietella in different states. However, the EAG value decreased after 10 μg·μL−1. Under the concentration of 10 μg·μL−1, the EAG value of the moth in different states was significantly higher than under the other concentrations (P < 0.05). The EAG reaction of unmated female and male moths on beta-caryophyllene increased with the concentration, and the EAG reaction value in 0.5 μg·μL−1 was not significantly different from the control (P > 0.05). After reaching 1 μg·μL−1, no significant difference was found in the EAG value among concentrations (P > 0.05), while the EAG reaction between 0.5 μg·μL−1 and 1 μg·μL−1 was significantly different (P < 0.05). The EAG response of the mated female moth and the unmated female moth to myrcene increased with the concentration. When the concentration reached 100 μg·μL−1, the EAG value was the largest, nevertheless the EAG value of 100 μg·μL−1 and 10 μg·μL−1 was not significantly different (P > 0.05). The results of olfactory behavior showed that formula A2, A3, A5, A7 and A8 had obvious attracting effect, especially formula A7, and the attracting rate of D. abietella in different states was over 70%. Unfortunately, formula A4, A9, A10 had obvious avoidance effect, and the avoidance rate of D. abietella in different states was as high as 50%~70%. Conclusion 10 μg·μL−1 of each component is the best stimulation concentration. Beta-caryophyllene has obvious attracting effect, while myrcene has obvious avoidance effect.

  • 植食性昆虫能准确定位寄主植物,对于其种群生存和繁衍具有重要的生物学意义[1-2]。植物挥发物是植物-昆虫-天敌三级营养关系建立过程中的重要媒介,自然界中,植食性昆虫可通过其灵敏的四大感知系统嗅觉、视觉、触觉和味觉系统感知、搜索植物挥发物的痕迹,从而确定方向做出趋向寄主植物的选择行为[3-4]。植物挥发物是由分子量为100~200 u的醇类、酮类、酯类、萜烯类等小分子物质组成[5-6]。针叶树挥发物的主要成分是单萜和倍半萜,而针叶树害虫则借助这些挥发物成分确定其取食和产卵寄主[7-9],尤其是单萜及其混合组分对有些梢斑螟成虫引诱作用较强[10-12]。病虫害和机械损伤均可诱导针叶树特异性萜类挥发物含量及种类的增加,而梢斑螟成虫的趋向则与这些特异性挥发物密切相关[13-14]。因此,明确寄主植物挥发物中引诱成分,有利于深入理解植食性昆虫寄主选择机制,对通过植物挥发物调控昆虫行为以降低或控制害虫的为害具有重要意义。

    梢斑螟属(Dioryctria)是针叶树球果和枝梢害虫的一大类,种类较多,危害较严重[15-16],影响林木的生长和森林的天然更新。其中,冷杉梢斑螟Dioryctria abietella属寡食性害虫,主要危害我国松类球果和枝梢,在林芝地区危害林芝云杉(Picea likiangensis var. linzhiensis W. C. Cheng & L. K.)球果,球果危害率为69.76%[17]。冷杉梢斑螟在林芝地区1年发生1代,以幼虫危害林芝云杉球果果轴、种鳞和种子,影响林芝云杉的结实,从而影响其天然更新,且以幼虫在球果内越冬,有滞育现象,主要在每年6、7月份成虫产卵期进行其寄主选择[18]。已有研究表明,冷杉梢斑螟幼虫趋向已经危害的球果取食,而其成虫则既能在当年生健康球果上产卵,也能在1年生虫害球果上产卵,但更趋向当年生健康球果产卵[19]。为了探讨冷杉梢斑螟成虫产卵期,林芝云杉球果引诱冷杉梢斑螟的特异性成分,本研究比较了林芝云杉虫害球果和健康球果主要挥发物的差异,研究了冷杉梢斑螟成虫对主要单萜挥发物EAG反应和其不同组合的行为反应,为研发冷杉梢斑螟成虫的引诱剂和驱避剂提供科学参考,为无公害防治该害虫提供科学理论依据。

    • 6月中下旬,从色季拉山林芝云杉天然林采集被害的林芝云杉球果,带回实验室解剖球果,对老熟幼虫继续放在球果中饲养,对蛹分雌雄,分别放置在30 cm × 40 cm × 50 cm的羽化笼中待羽化,每天白天检查冷杉梢斑螟成虫羽化情况,对羽化成虫单头装入透明塑料杯(350 mL)中,培养在人工气候箱(白天20 ± 1℃,晚上为13 ± 1℃),相对湿度50%~60%,光周期为16L∶8D下,用10%蜂蜜水补充营养,每天更换1次蜂蜜水,待发育到2日龄作为测试昆虫。将当天羽化的雌雄成虫转入交配笼,待其交配完后分别放回养虫杯内,作为测试昆虫。

    • 在冷杉梢斑螟成虫羽化高峰期,采集林芝云杉当年生健康球果、上年生健康球果、上年生受害球果,分别放入3个500 mL烧杯内,每个样重复3次,用封口膜密封,在室温条件(15~20℃)下放置12 h后,采用固相微萃取进行吸附,萃取针型号 PDMS 100 μm,老化温度270℃,时间1 h。萃取温度30℃,萃取时间40 min,热解析温度260℃,热解析时间30 s。然后立即进行GC-MS分析,仪器是安捷伦5975,GC-MS的色谱条件:色谱柱为Hp-5毛细管柱(30 m × 0.25 mmID,膜厚0.25 μm),进样口温度260℃;柱温起始温度40℃,保持3 min,以8℃·min−1升到280℃,保持10 min,载气He (纯度99.999%),柱流量1 mL·min−1。质谱条件:电离方式为EI离子源,电子能量70 eV,离子源温度230℃,接口温度260℃。挥发物根据质谱库Nist 2008鉴定,统计相对含量大于1%以上的化合物。根据林芝云杉球果的GC-MS结果以及冷杉梢斑螟成虫趋向和产卵选择的结果,确定冷杉梢斑螟触角电位所用标准化合物共7种(表1[19],均购于美国Sigma公司,其中正己烷为溶剂。各标准品化合物均用正己烷作溶剂配制而成,浓度为100、10、1、0.5、0.1 μg·μL−1,测试冷杉梢斑螟不同成虫类型对不同浓度标准化合物的EAG反应。

      化合物分子式相对分子量CAS纯度
      α-蒎烯 α-Pinene C10H16 136.23 7785-70-8 ≥ 98%
      β-蒎烯 β-Pinene C10H16 136.23 127-91-3 95%
      (1S)-(-)-β-蒎烯 (1S)-(-)- β-Pinene C10H16 136.24 18172-67-3 99%
      柠檬烯 Limonene C10H16 136.23 5989-27-5 99%
      反式石竹烯 β-Caryophyllene C15H24 204.35 87-44-5 > 90%
      月桂烯 Myrcene C10H16 136.23 123-35-3 ≥ 95%
      正己烷 Hexane C6H14 86.11 110-54-3 99%

      Table 1.  Characteristics of standard compounds for testing

    • 触角电位仪:触角电位仪为德国Syntech公司生产,型号为IDAC-2。信号采集系统:多通道USB接口数据采集控制器,分辨率达到0.1 μv;取样速率达到1~50 000·s−1;所用软件为Syntech公司提供的配套专用软件;测量探头:导电胶电极连接昆虫触角;气流控制单元:刺激气流控制单元,带内置气泵,流量25 mL·s−1

      Y型嗅觉仪:用玻璃订制成的Y型管,主臂长17 cm,两侧臂等长均为15 cm,内直径均为3.5 cm,两侧臂夹角60º,两侧臂的开口处连接样品瓶、然后通过硅胶软管连接风速流量计、加湿瓶、活性炭装置和空气抽气泵(QC-2B)。开启抽气泵后,空气经过活性炭过滤、加湿、气体流量控制器后分别吹过样品瓶中的化合物和对照,然后进入Y型嗅觉仪的侧臂,再汇入主臂,气流总流量控制在180 mL·min−1

    • 将健康活跃的冷杉梢斑螟未交配2日龄雌雄成虫和已交配雌成虫的整根触角用眼科剪沿基部剪下,触角两端切掉一节,通过导电胶(SPECTRA 360, Fairfield, NJ, USA)把触角固定在电极两端,然后将电极插入EAG探头中,随之调试仪器,待基线平稳后开始测定。为了减少试验中触角活性降低引起的误差,每根触角测试前,先用正己烷测试触角是否有活性。

      测定时,用移液枪取不同浓度的挥发物组分1 μL滴到干净的滤纸片上(25 mm × 7.5 mm),室温下静置20 s待正己烷挥发后,装入巴斯德管内(管口直径2 mm,长12 cm),巴斯德管的尖端接入到气体刺激控制装置,通过踏板控制将巴斯德管内的气味物质送入有连续气流的钢管中,钢管内连续气流速度为4 mL·s−1,刺激管软管中间隔气流速度为4 mL·s−1,两股气流混合后被送到钢管出口端相距约1 cm处的触角上,从而引起冷杉梢斑螟触角产生电位反应,为保证触角完全恢复感受功能,连续两次刺激间隔时间不少于30 s。每种挥发物测试10根(每头虫取1根触角)有活性触角,每个剂量平行测定3次,每种挥发物测定前后各进行1次对照测定;不同挥发物测定顺序随机,而同一挥发物测试顺序为低剂量到高剂量。

    • 利用Y型嗅觉仪测定冷杉梢斑螟已交配雌成虫、2日龄未交配雌雄成虫对球果挥发物组分的选择行为,各标准品的用量根据虫害球果中含量和标准品的挥发量确定,林芝云杉挥发物组分配制情况见表2

      挥发物组分
      Volatile components
      林芝云杉球果挥发物组分的配方
      Formulation of volatile components in P.likiangensis var. Linzhiensis cones/( μg·μL−1)
      A1A2A3A4A5A6A7A8A9A10CK
      α-蒎烯 α-Pinene 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80
      β-蒎烯 β-Pinene 3.20 3.20 4.20 3.20 4.20 3.20 4.20
      柠檬烯 Limonene 3.00 3.00 1.50 3.00 1.50 3.00 1.50
      反式石竹烯 Trans caryophyllenee 0.15 0.15 0.15 0.15 0.15
      月桂烯 Myrcene 0.20 0.20 0.20

      Table 2.  Determined volatiles on D.abietella by Y-tube olfactometer

      生测时,用移液枪各取1 μL表2中的挥发物组分滴在干净的小滤纸片上(30 mm × 40 mm),待正己烷挥发20 s后,将其放入连接在一个侧臂的样品瓶中,另一个侧臂上的样品瓶为对照正己烷滤纸片。打开空气泵后,调节气体流量计使两侧臂的气流均为90 mL·min−1,然后于Y型管主臂开口端1/2处分别单头引入冷杉梢斑螟已交配雌成虫、2日龄未交配雌、雄成虫观察5 min,当试虫到达其中一个臂的1/2处,并在该侧臂停留1 min 以上,就记录该试虫已经做出选择,选择气味源臂记录“+”,选择无气味源臂记录“-”。如果试虫引入后在5 min内都不做选择,则记录该虫为不选择,同时结束本次试验。林芝云杉球果气味源物质的配方共10种(见表2),每种配方测试30头冷杉梢斑螟成虫,每测试15头试虫调换样品瓶,每测试1种配方,更换Y型管和样品瓶,用无水乙醇和蒸馏水清洗干净内臂,200℃烘干备用。Y 型嗅觉仪生测试验条件为:照度2 000 lx,温度为20℃左右,相对湿度50%~60%,由于冷杉梢斑螟成虫在夜间活跃,所测试时间在晚上8:00—12:00进行,试虫测试前饥饿4 h。

    • 用Syntech公司提供的软件对不同处理的触角电位反应值进行标准化校正,根据王茹林等[20]和阎雄飞等[21]的方法,为了消除昆虫个体间的差异以及环境、溶剂的影响,以正己烷为对照,按公式计算触角电位反应相对值:触角电位反应相对值 = 处理反应值-前后对照反应均值。数据采用SPSS19.0软件对同一成分不同浓度的EAG 反应值进行单因素方差分析,检验雌、雄蛾间对同一化合物不同浓度的EAG反应差异显著性。

      按下列公式计算冷杉梢斑螟对不同挥发物组合的诱引率、驱避率[22]

      数据采用SPSS19.0软件进行统计和分析,对Y型嗅觉仪的对照臂和测试臂中虫数进行X2检验。

    2.   结果与分析
    • 冷杉梢斑螟成虫在当年生健康球果和上年生虫害球果上产卵,GC-MS检测林芝云杉当年生健康球果和上年生虫害球果挥发性萜类化合物的比较见表3。由于 ≥ 1%的化合物加起来在95%以上,因此统计了含量 ≥ 1%的化合物。健康新果和虫害旧果均含有6种化合物,不同之处是健康新果含有7.64%的双环[3.1.0]六-2-烯,4-甲基-1-(1-甲基乙基)-,而虫害旧果不含;健康新果不含3-亚甲基-6-(1-甲基乙基)环己烯,虫害旧果却含7.39%环己烯。相同组分含量除健康新果的β-蒎烯和柠檬烯显著高于虫害旧果外,其他组分含量在健康新果和虫害旧果间差异不显著(P > 0.05)。前期研究发现,上年生健康球果除主成分与本研究一样外,另外含7.39%的月桂烯和1.53%的3-蒈烯[19]

      编号
      No.
      化合物
      Compounds
      相对含量
      Relative content/%
      健康新果
      Healthy new cones
      虫害旧果
      Infested old cones
      1 α-蒎烯 α-Pinene 17.43 ± 2.16a 22.81 ± 1.21a
      2 β-蒎烯 β- Pinene 31.18 ± 3.35a 41.99 ± 3.12b
      3 (1S)-(−)-β-蒎烯 (1S)-(−)-Beta-Pinene 7.45 ± 0.27a 6.25 ± 0.89a
      4 柠檬烯 Limonene 30.07 ± 3.27a 15.23 ± 1.05b
      5 双环[3.1.0]六-2-烯,4-甲基-1-(1-甲基乙基)-
      1-(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)-N-methylpropan-2-aminehydrochloride
      7.64 ± 0.86 ——
      6 3-亚甲基-6-(1-甲基乙基)环己烯
      3-methylene-6-(1-methylethyl)-Cyclohexene
      —— 7.39 ± 0.67
      7 反式石竹烯 trans-Caryophyllene 1.24 ± 0.07a 1.71 ± 0.32a
        注:同一行数据后不同字母表示差异显著(P < 0.05)
        Note: Different letters in the same line indicated significant differences at 0.05 level.

      Table 3.  Volatile terpenoids from new healthy cones and old pest cones of P.likiangensis var. linzhiensis

    • 未交配冷杉梢斑螟2日龄成虫、完成交配的雌成虫对6 种不同浓度林芝云杉球果挥发物的EAG反应(见表4)。3种状态下的冷杉梢斑螟对不同浓度的α-蒎烯、β-蒎烯、(1S)-(-)-β-蒎烯、柠檬烯、反式石竹烯、月桂烯均有EAG反应,但具有差异性。在10 μg·μL−1范围内,与对照正己烷相比,α-蒎烯、β-蒎烯、(1S)-(-)-β-蒎烯、柠檬烯随着各组分浓度的增加,3种状态下的冷杉梢斑螟EAG值也逐渐增大,当剂量超过10 μg·μL−1,EAG值下降,且当各组分浓度为10 μg·μL−1时,不同状态的冷杉梢斑螟EAG值显著高于其他浓度(P < 0.05)。未交配雌、雄蛾对反式石竹烯的EAG反应随着浓度的增加而增大,在0.5 μg·μL−1内的EAG反应值与对照差异不显著性(P > 0.05),达到1 μg·μL−1以后,EAG值在各浓度间差异亦不显著(P > 0.05),而0.5 μg·μL−1与1 μg·μL−1间EAG反应差异显著(P < 0.05)。交配雌蛾、未交配雌蛾对月桂烯的EAG反应随浓度增大而增强,当浓度为100 μg·μL−1时EAG值最大,但100 μg·μL−1与10 μg·μL−1的EAG值差异不显著(P > 0.05)。总体上来看,冷杉梢斑螟对10 μg·μL−1的不同挥发物EAG反应最强,且对柠檬烯EAG反应最大,对反式石竹烯EAG反应最弱。除反式石竹烯外,其他几种挥发性化合物EAG反应总体上表现为已交配雌蛾 < 未交配雌蛾 < 未交配雄蛾。

      化合物
      Compounds
      成虫类型
      Adult type
      浓度 Concentration/(μg·μL−1
      CK(hex)0.10.5110100
      α-蒎烯 α-Pinene 交配雌蛾 Mated females 0.63 ± 0.12 e 1.22 ± 0.14 d 1.93 ± 0.46 c 2.39 ± 0.48 b 4.67 ± 1.05 a 2.09 ± 0.52 c
      未交配雌蛾 Unmated females 0.54 ± 0.07 d 1.54 ± 0.24 c 1.83 ± 0.49 c 2.58 ± 0.82 b 5.46 ± 1.30 a 2.49 ± 0.70 b
      未交配雄蛾 Unmated males 0.76 ± 0.06 e 1.89 ± 0.32 d 1.98 ± 0.64 d 3.12 ± 0.73 c 6.17 ± 1.57 b 2.68 ± 0.78 a
      β-蒎烯 β- Pinene 交配雌蛾 Mated females 0.72 ± 0.07 d 1.28 ± 0.22 c 1.59 ± 0.58 c 2.29 ± 0.67 b 4.68 ± 1.20 a 2.19 ± 0.65 b
      未交配雌蛾 Unmated females 0.68 ± 0.12 d 1.42 ± 0.17 c 1.71 ± 0.53 c 2.59 ± 0.70 b 4.97 ± 1.07 a 2.24 ± 0.59 b
      未交配雄蛾 Unmated males 0.87 ± 0.13 d 1.63 ± 0.32 c 1.79 ± 0.53 c 2.87 ± 0.63 b 5.12 ± 1.17 a 2.34 ± 0.69 b
      (1S)-(-)-β-蒎烯 (1S)-(-)-Beta-Pinene 交配雌蛾 Mated females 0.67 ± 0.06 e 1.26 ± 0.22 d 2.03 ± 0.68 cd 2.67 ± 0.68 bc 5.57 ± 1.27 a 2.90 ± 0.56 bc
      未交配雌蛾 Unmated females 0.74 ± 0.07 e 1.67 ± 0.37 d 2.54 ± 0.45 c 3.13 ± 0.88 b 5.87 ± 1.27 a 3.14 ± 0.83 b
      未交配雄蛾 Unmated males 0.69 ± 0.08 e 1.94 ± 0.41 d 2.89 ± 0.65 c 3.58 ± 0.45 b 6.51 ± 1.35 a 3.52 ± 0.90 b
      柠檬烯 Limonene 交配雌蛾 Mated females 0.70 ± 0.08 e 1.27 ± 0.18 d 1.93 ± 0.63 c 2.72 ± 0.72 b 4.97 ± 1.46 a 2.50 ± 0.84 b
      未交配雌蛾 Unmated females 0.78 ± 0.08 e 1.82 ± 0.45 d 2.15 ± 0.72 c 3.57 ± 0.82 b 6.12 ± 1.56 a 3.14 ± 1.07 b
      未交配雄蛾 Unmated males 0.85 ± 0.13 e 2.01 ± 0.40 d 2.67 ± 0.88 c 4.25 ± 1.14 b 8.87 ± 1.77 a 4.18 ± 1.34 b
      反式石竹烯 trans-Caryophyllene 交配雌蛾 Mated females 0.66 ± 0.06 e 0.95 ± 0.20 e 1.34 ± 0.62 d 1.78 ± 0.58 cd 2.77 ± 0.53 ab 2.32 ± 0.74 bc
      未交配雌蛾 Unmated females 0.63 ± 0.06 b 0.86 ± 0.15 b 0.98 ± 0.27 b 1.21 ± 0.34 a 1.32 ± 0.35 a 1.35 ± 0.39 a
      未交配雄蛾 Unmated males 0.75 ± 0.07 b 0.82 ± 0.14 b 0.94 ± 0.26 b 1.23 ± 0.29 a 1.36 ± 0.32 a 1.47 ± 0.19 a
      月桂烯 Myrcene 交配雌蛾 Mated females 0.85 ± 0.04 d 1.06 ± 0.09 d 1.76 ± 0.55 c 2.49 ± 0.77 b 4.48 ± 1.21 a 4.69 ± 1.27 a
      未交配雌蛾 Unmated females 0.78 ± 0.09 e 1.12 ± 0.26 d 1.89 ± 0.40 c 3.14 ± 0.95 b 5.16 ± 1.63 a 5.27 ± 1.76 a
      未交配雄蛾 Unmated males 0.81 ± 0.19 e 1.21 ± 0.17 d 2.12 ± 0.65 c 4.24 ± 1.12 b 6.65 ± 1.78 a 6.44 ± 2.04 a
        注:同一行数据后不同字母表示差异显著(P < 0.05)。
        Note: Different letters in the same line indicated significant differences at 0.05 level.

      Table 4.  EAG responses of adults of D.abietella

    • 根据触角电位测试结果,以2日龄冷杉梢斑螟雌雄成虫、已交配雌虫为试虫,以α-蒎烯为对照,根据GC-MS测试结果,在α-蒎烯基础上按比例添加其他化合物组分进行Y型嗅觉仪生物行为测定,结果如表5~7所示。由表5可知,各配方对2日龄未交配冷杉梢斑螟雌成虫的引诱数量由多到少为:A7 > A8 > A2、A5 > A3 > CK > A1 > A6 > A4、A10 > A9,其中,配方A7、A8对其引诱率分别为73.3%和60.0%;配方A4、A9和A10对其趋避率分别高达56.7%、63.3%和60.0%;配方A6对其引诱作用不明显。各配方对2日龄未交配冷杉梢斑螟雄成虫的引诱数量(见表6)由多到少为:A7 > A3、A5、A8 > A2 > CK > A1、A6 > A10 > A9 > A4,其中,配方A7对其引诱率最高,为76.7%;配方A4、A9和A10对其趋避率最高,分别为63.3%、56.7%和56.7%;配方A6对其引诱作用不明显。表7统计了各配方对已交配冷杉梢斑螟雌成虫的引诱数量,由高到低分别为:A7 > A3、A5 > A2 > A8 > A6、A1 > CK > A4 > A9、A10,其中,配方A3、A5和A7对其引诱数量高于20头,引诱率依次为70.0%、70.0%和80.0%;配方A4、A9和A10对其趋避率最高,分别为63.3%、60.0%和60.0%。总体上,配方A2、A3、A5、A7、A8对其具有明显引诱效果,尤以配方A7最佳,配方A4、A9、A10对其具有明显趋避效果。

      化合物配方
      Compound formula
      +/头
      +/Numbers
      −/头
      −/Numbers
      不选择/头
      Unselect/Numbers
      引诱率
      Attraction rate/%
      趋避率
      Avoidance rate/%
      不选择率
      Unselect rate/%
      吸引的X2
      X2 test of attraction
      吸引的P
      P of attraction
      A11310743.333.323.3
      A2168653.326.720.013.2870.001*
      A3157850.023.327.718.2190.000**
      A4617720.056.723.325.5560.000**
      A5168653.326.720.00.2630.877
      A61013733.343.323.311.5420.003**
      A7223573.310.016.711.2570.004**
      A8184860.013.326.78.0960.017*
      A9419713.363.323.315.2230.000**
      A10618620.060.020.019.0910.000**
      CK148846.726.726.7
       注:“+”表示吸引,“−”表示趋避,*表示差异显著(P < 0.05),**表示差异极显著(P < 0.01),下同。
       Note: “+” show attraction,“−” show avoidance,* show significantly different at 0.01 level.The same bellow.

      Table 5.  Y-tube olfactometer bioassay results of unmated female adults of D.abietella on different formulation of compound components

      化合物配方
      Compound formula
      +/头
      +/Numbers
      −/头
      −/Numbers
      不选择/头
      Unselect/Numbers
      引诱率
      Attraction rate/%
      趋避率
      Avoidance rate/%
      不选择率
      Unselect rate/%
      吸引的X2
      X2 test of attraction
      吸引的P
      P of attraction
      A11113636.743.320.0
      A2158750.027.723.313.2870.001*
      A3175856.716.726.718.2190.000**
      A4519616.763.320.025.5560.000**
      A5177656.723.320.00.2630.877
      A61112736.74023.311.5420.003**
      A7233476.710.013.311.2570.004**
      A8178556.726.716.78.0960.017*
      A9617720.056.723.315.2230.000**
      A10717623.356.720.019.0910.000**
      CK1210840.033.326.7

      Table 6.  Y-tube olfactometer bioassay results of unmated male adults of D.abietella on different formulation of compound components

      化合物配方
      Compound formula
      +/头
      +/Numbers
      −/头
      −/Numbers
      不选择/头
      Unselect/Numbers
      引诱率
      Attraction rate/%
      趋避率
      Avoidance rate/%
      不选择率/%
      Unselect rate/%
      吸引的X2
      X2 test of attraction
      吸引的P
      P of attraction
      A11510550.033.316.7
      A2206466.720.013.313.2870.001*
      A3215470.016.713.318.2190.000**
      A4619520.063.316.725.5560.000**
      A5216370.020.010.00.2630.877
      A6166853.320.026.711.5420.003**
      A7243380.010.010.011.2570.004**
      A8195663.316.720.08.0960.017*
      A9718523.360.016.715.2230.000**
      A10618620.060.020.019.0910.000**
      CK1312543.340.016.7

      Table 7.  Y-tube olfactometer bioassay results of mated female adults of D.abietella on different formulation of compound components

    3.   讨论
    • 植食性昆虫同植物在长期协同进化的过程中,形成了特定寄主植物范围,并在不同生理期取食或产卵于寄主植物的特定组织和器官,这与寄主定向识别或选择的过程中,寄主植物释放的特异性挥发物承担着重要通讯引导作用有关[23-24]。已有研究表明,虫害、机械损伤均能引起挥发物成分变化,进而影响害虫的寄主选择[10-11]。本研究中,健康球果和虫害球果的挥发物组分略有差异,这可能是虫害引起寄主植物挥发物成分改变。

      昆虫生物活性判定的常用方法是触角电位和嗅觉行为反应测定。前者是判断昆虫触角对化学信号刺激的电生理反应,后者则是判断昆虫对化学信号的定向行为响应[5]。本研究中不同状态下的冷杉梢斑螟成虫对不同浓度下的α-蒎烯、β-蒎烯、(1S)-(−)-β-蒎烯、柠檬烯、反式石竹烯、月桂烯均具有EAG反应,但不完全随浓度的升高而增大,总体上,在剂量为10 μg·μL−1时,冷杉梢斑螟对不同化合物具有最大EAG值,这与松梢象对红松的α--蒎烯、反--柠檬烯、β--蒎烯、β--月桂烯、罗勒烯、莰烯及3--蒈烯的不同浓度EAG反应一致[25],这可能是达到了反应浓度的阈值。综合不同组分各浓度下EAG值,反式石竹烯对冷杉梢斑螟的刺激能力较弱,结合行为测试结果,含有反式石竹烯的配方(A7、A8)对冷杉梢斑螟的引诱能力较强,这可能是冷杉梢斑螟对其较为敏感,也可能是因为EAG反映的是嗅觉感受器对特定化合物反应电压的强弱,而最终产生的行为反应则要经历3个过程,依次为:嗅觉受体至大脑嗅叶之间的神经编码和投射、中枢神经系统对神经电生理信号的综合评判以及大脑根据评判结果对运动器官进行反馈调控,这3个过程均有可能造成神经电生理信号的重新整合[26],同时也说明仅靠EAG反应不能确定昆虫在定向过程中寄主挥发物的作用效果。雌虫的EAG反应 < 雄虫,这与杨干象(Cryptorrhynchus lapathi)、分月扇舟蛾(Clostera anastomosis)的不同性别EAG反应结果不一致[27-28]

      已有研究表明[29-30],植食性昆虫在寻找寄主阶段,主要通过识别寄主植物特异性化学指纹图谱而到达植物,影响昆虫反应的重要因子是植物挥发物的特定浓度和不同挥发物的特定比例。本研究中配方A7对3种类型的成虫引诱率最高,配方A4、A9、A10诱虫率低,与对照相比,均有显著性差异,说明月桂烯对冷杉梢斑螟有驱避作用。配方A7、A8在配方A5、A6及基本组分的基础上添加一定量的反式石竹烯,说明反式石竹烯在球果挥发物组分中引诱成虫有增效作用,而且GC-MS检测到成虫期的健康新果、上年生虫害球果含少量反式石竹烯,而上年生健康球果没有检测到反式石竹烯(上年生健康球果无引诱效果)。配方A5和A6组成成分相同而含量不同,但配方A6无明显引诱效果,这可能与化合物比例不同有关。仅含α-蒎烯的对照与A1、A2、A3配方的2日龄雌雄成虫诱虫数量无显著性差异,说明α-蒎烯、β-蒎烯、柠檬烯是球果挥发物的基础组分,在冷杉梢斑螟搜寻寄主的过程中起着重要作用。严格地讲,Y形嗅觉仪并不是测定驱避效果的有效仪器,只能对驱避的检测作参考,因为在自然界中,昆虫面临着丰富的嗅觉信息。

      查阅相关文献,月桂烯和石竹烯对昆虫常有趋避和引诱作用。杨慧通过研究兴安落叶松鞘蛾对寄主挥发物的反应,发现落叶松鞘蛾雄成虫对月桂稀在浓度0.8 mol·L−1时有驱避作用[31];刘胜英通过研究落叶松毛虫对落叶松挥发性化合物的诱导和利用,发现月桂烯对落叶松毛虫幼虫有驱避作用[32],这些研究结果与本研究一致;王延来通过研究花椒窄吉丁对其高发期寄主果实挥发物的电位触角和行为反应,发现月桂烯在浓度在10 μg·μL−1时对花椒窄吉丁雄成虫有较强的吸引作用[33];袁丽芳通过研究花椒窄吉丁对寄主挥发物的化学感受机制,发现10 μg·μL−1的石竹烯对花椒窄吉丁雌虫有驱避作用[34];张振通过化学生态技术调控青杨脊虎天牛种群研究发现,月桂烯在浓度10−2 mol·L−1时对青杨脊虎天牛雌、雄成虫均有引诱作用[35]。昆虫分类地位不同,昆虫个体差异大,昆虫触角上的感器不同,对不同的气味物质感受不同,则行为反应表现不同。

    4.   结论
    • 虫害可引起球果内挥发性化合物的组成成分及含量发生变化,在剂量10 μg·μL−1时,各组分可引起冷杉梢斑螟最大的EAG反应值,配方A1、A2、A3引诱冷杉梢斑螟的效果与仅含α-蒎烯的对照无显著差异,在此基础上若增加反式石竹烯可增强引诱冷杉梢斑螟的效果,若增添月桂烯,可显著提高冷杉梢斑螟趋避的效果,这一结论是在实验室条件下得出的,与野外的实际环境有较大的不同,今后有待在室外开展冷杉梢斑螟的引诱和趋避试验。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return