诱导杨树抗溃疡病机理的研究*

杜建玲 项蔚华 沈瑞祥

摘要 用 100、500、1 000ppm-浓度的 5406 细胞分裂素和稀土分别诱导群众杨的离体枝条,3 d 后进行接种。实验证明,用"5406"发病率降低了 63.3%~70%,病情指数降低了 51.5~65.2;用稀土发病率降低了 60%~70%,病情指数降低了 29.1~73.9。接种后的群众杨皮部 SOD 活性在 72~96 h 内达到最高峰,以后逐渐下降,并趋于稳定;呼吸强度 48 h 达到最大值,96 h 明显减弱,并基本稳定。发病后,皮部总蛋白含量增加 1.7~4.4 倍(对照总蛋白含量仅增加 0.9 倍),增加的量随诱导剂的浓度增大而增多。

关键词 群众杨、杨树溃疡病、诱导抗性、抗性育种

杨树溃疡病(Dothiorella gregaria Sacc.)是杨树的重要病害。对于杨树溃疡病的研究,我国很多学者做了大量的工作,但如何提高杨树本身抗病性的研究报道不多。本试验旨在探讨小美旱杨树体内的生理生化变化,为杨树抗性育种提供科学依据。

1 材料和方法

1.1 材料

2 年生群众杨[*Populus* × *xiaozhuanica* W. Y. Hsu et Liang cv. 'Popularis']苗木来自北京大兴县六合庄林场;杨树溃疡病菌是从北京杨上分离纯化的菌株,经回接后保存备用;5406 细胞分裂素由浙江省嘉善县微生物厂生产;稀土由河南省商丘冶炼化工厂生产。

1.2 方法

- 1.2.1 配制诱导剂溶液 将两种诱导剂(5406 细胞分裂素和稀土)分别配成 100、500、1 000 ppm 的水溶液。
- 1.2.2 取样方法 1991年11月16日取2年生群众杨粗细均匀的枝条,剪成长20cm的小段,将下端分别浸泡在不同浓度的诱导剂溶液中诱导3d;以清水浸泡的枝条作对照。用牙签接种法接种病原菌,每根枝条接3个点(均匀分布)。每天观察发病情况,1991年12月15日统计发病率及病情指数。同时将另一部分枝条以同样条件诱导并接种,而后测定生理生化指标。在接种点后3cm处取样,将3次重复的平均值作为每种处理的结果(以对照测定为参考)。
- 1.2.3 超氧化物歧化酶(SOD)活性的测定 按照朱广廉等[1]的方法,利用 SOD 抑制氮兰四唑(NBT)在荧光下进行还原(一个酶活单位为 NBT 的还原抑制到 50%时所需的酶量)。将群众杨枝条诱导后接种病原菌,每 12 h 从接种点 3 cm 处取树皮,测定其 SOD 活性,待发病后再测定一次。
- 1.2.4 树皮总蛋白含量的测定 用考马斯亮蓝法[2]测定树皮总蛋白含量。

¹⁹⁹³⁻⁰³⁻²⁴ 收稿。

杜建玲讲师(河北林学院 河北保定 071000);项蔚华,沈瑞祥(北京林业大学)。

^{*} 本文为第一作者的硕士论文之一。

79

- (1)制作标准曲线 配制一系列的牛血清标准蛋白溶液(每 0.5 mL 标准溶液中含牛血清蛋白 $0.10.20.30.40.50.60\mu g$)。取标准蛋白溶液 0.5 mL,加 4 mL 考马斯亮蓝溶液,反应 3 min,测定 $\lambda = 595 \text{ nm}$ 的 OD 值,绘出标准曲线。
- (2)样品蛋白含量的测定 将树皮样品研磨后,用 pH7.8 的磷酸缓冲液提取酶液,然后在 0 \mathbb{C} 条件下离心,离心后取酶液 0.5 mL,加 4 mL 考马斯亮蓝溶液,反应 3 min,测定 λ = 595 nm 的 *OD* 值,查标准曲线,计算总蛋白含量。
- 1.2.5 呼吸作用的测定 利用 RS—5100型测氧仪(上海雷磁仪器厂生产)测定氧的消耗量。在距接种点 3 cm 处用打孔器(直径 7 mm)取 6 片树皮(圆片 6 片),加水 15 mL,测定水中溶氧量的变化,每隔 1 min 记录一次溶氧量的读数,根据读数的差值(即每分钟的耗氧量)画出呼吸曲线,求出反应初速度。接种后每隔 24 h 测定树皮的呼吸强度,发病后再测定一次。

2 结果与分析

2.1 诱导后的群众杨枝条发病情况

表 1 表明,诱导 1 个月后的群众杨的溃疡病发病率和病情指数均降低,"5406"诱导后发病率降低了 63.3%~70%,病情指数降低了 51.5~65.2;稀土诱导后发病率降低了60%~70%,病情指数降低了29.1~73.9。诱导作用的效果与浓度有关,浓度越大,效果越好。两种诱导剂浓度为100 ppm 时的病情指数均比对照降低50%左右,说明两种诱导剂的3个浓度,均可提高群众杨的抗性。

表 1 诱导后的群众杨枝条发病情况

诱导剂	浓 度 (ppm)	发病率 (%)	病情指数	校正后的 病情指数
5406 细胞	100	36. 7	44. 2	48. 5
分裂素	500	33. 3	36. 2	39.8
	1 000	30.0	31.7	34.8
稀土	100	40.0	55. 5	60.9
	500	36.7	39. 9	43.6
	1 000	30.0	23.8	26. 1
CK	_	100.0	91. 2	100.0

2.2 诱导后群众杨树皮 SOD 活性的变化

表 2 方差分析表明,两种诱导剂诱导群众杨后,不同时间及浓度间的酶活性存在着显著差异。诱导后树皮的 SOD 活性均高于对照。随着诱导浓度的增大,SOD 活性也增高,不同时间内增加的幅度 48 h 为 $12.7\% \sim 28.6\%$; 72 h 为 $19.7\% \sim 39.8\%$; 96 h 为 $8.6\% \sim 44.2\%$; 120 h

为 5. 9%~60. 0%;发病后为 17. 9%~76. 4%。诱导后的 SOD 活性高于健康的正常枝条。而正常枝条又高于对照。接种后酶活性的变化有一定规律,"5406'和稀土的上述 3 个浓度诱导后,SOD 活性分别在 72 h 和 96 h 达到最大值,而正常枝条是在逐渐下降。因此推断抗病作用是在诱导后经过一段时间才表现的。SOD 是植物体内普遍存在的一种酶,它能够清除植物体内的超氧自由基。在正常情况下,体内自由基的产生与清除处于动态平衡状态,自由基浓度很低,不会引起伤

表 2 诱导的群众杨接种后树皮 SOD 活性的变化

[单位:u/h·g(fw)]

诱导剂	浓度		测	定	时	间(h)	
	(ppm)	48	72		96	120	发病后
5406 细胞	100	874.29	1 039.	58	900.0	8 748.95	737.84
分裂素	500	858.09	1 199.	74 1	177.9	9 851.94	813.30
	1 000	958.95	1 133.	07 1	093.7	5 962.43	921.82
稀土	100	980.24	1 062.	68 1	089. 9	2 848.48	811.91
	500	997.60	1 028.	02 1	049.2	8 1 001.84	954.33
	1 000	976.56	1 026.	72 1	169.7	7 1 131.55	1 102, 89
CK	_	775.59	857.	99	828.6	2 705.94	625.34
正常枝条①	_	843. 62	846.	44	834. 6	9 734.98	_

①指不作任何处理的健康枝条。

害。当受到逆境时,自由基浓度增加,平衡被破坏,导致细胞膜的完全性破坏。SOD 是活性氧(O) 的净化剂。通过去除活性氧等对机体起保护作用[3,4]。

2.3 诱导后的群众杨树皮总蛋白含量的变化

群众杨离体枝条诱导接种后 120 h 和发病后各测定一次树皮总蛋白含量,对结果(表3)进行方差分析,发病前各处理间总蛋白含量无显著差异,发病后差异显著。发病前各处理的总蛋白含量与健康的正常枝条相近,说明枝条的总蛋白含量基本一致;发病后诱导枝条的总蛋白含量比发病前增加 1.7~4.4 倍,而对照只增加了 0.9 倍,说明诱导促使树皮的总蛋白含量增加。对照总蛋白含量增加可能是由于病原菌丝的出现而产生,所测蛋白的量也包含了菌丝蛋白。诱导后的群众杨

表 3 诱导的群众杨枝条发病前后 总蛋白含量的变化

	34+ HF	台 花白金昌	[/_(f)]		
药 剂	浓度	- 总蛋白含量[μg/g(fw)]			
=3 /13	(ppm)	发病前	发病后		
5406 细胞	100	539. 81	1 707.09		
分裂素	500	515.44	2 086.61		
	1 000	533. 36	2 504. 85		
稀土	100	575. 05	1 556.60		
	500	568.63	2 032.14		
	1 000	537.55	2 896. 23		
CK	_	532. 95	1 026. 62		
正常枝条	_	574.88	_		

发病轻,菌丝生长少,而蛋白含量却增加较多,说明增加的部分确由树皮蛋白增多引起^[5,6]。群众杨诱导后总蛋白含量增加,并与抗病能力呈正相关,证明诱导后产生了病原相关蛋白。

2.4 诱导后群众杨呼吸的变化

表 4 表明,接种后 48 h 呼吸强度最大,96 h 明显减弱,以后便无明显变化。说明接种病原菌后植物有一个抵御侵染的过程。使得呼吸强度增大,以后便逐渐恢复正常状态。与正常枝条的呼吸强度相近。而没有经过诱导的对照枝条呼吸一直保持在较高的水平,发病后的呼吸强度大于正常枝条,可以认为,诱导后呼吸的变化与抗病性有关,这也是使发病率降低的一个原因。

表 4 诱导后的群众杨接种耗氧情况

[单位:mg/(L·min)]

	剂	浓度 (ppm)	测 定 时 间(h)				
到	ניזכ		48	72	96	120	发病后
5406	细胞	100	0.079	0.075	0.044	0.052	0.051
分裂	皇家	500	0.079	0.077	0.039	0.040	0.048
		1 000	0.078	0.077	0.047	0.049	0.051
稀	±	100	0.083	0. 073	0.044	0.043	0.050
		500	0.079	0.074	0.049	0.051	0.064
		1 000	0.076	0.075	0.048	0.051	0.061
C	K	_	0.070	0.068	0.051	0.060	0.068
正常	枝条	_	0.054	0.053	0.050	0.050	_

3 讨论

5406 细胞分裂素和稀土诱导群众杨后,产生了对溃疡病的抗性,群众杨生理变化与抗病性密切相关。关于诱导抗性中植物产生 PR 蛋白(病原相关蛋白)与抗病、几丁酶与抗病关系,已有过报道^[5~7]。由于几丁酶与木质化有关,若能弄清几丁酶的变化,有利于抗病机理的探索。此外,本试验中总蛋白含量的增加,是否包含 PR 蛋白,有待于进一步研究。

参考文献

- 1 朱广康,钟海文,张爱琴.植物生理学实验.北京:北京大学出版社,1990.
- 2 李 琳,焦新之.应用蛋白染色剂考马斯亮蓝测定蛋白质的方法.植物生理学通讯,1980,(6):52~55.

- 3 王建华,刘鸿先,徐 同,超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1989,(1);1~7.
- 4 李柏林,梅慧生.燕麦叶片衰老与活性氧代谢的关系.植物生理学报,1989,15(1):6~12.
- 5 杜良成,王 钧.病原相关蛋白及其在植物抗病中的作用.植物生理学通讯,1990,(4):1~6.
- 6 Metraux J P, Bouer T H. A Pathogensis-related protein in cucumber is a chitinase. physiological and Molecular Plant Pathology, 1986,28:161~169.
- 7 张世明. 高等植物几丁酶研究进展. 植物生理学通讯,1989,(1):8~13.

A Study on the Mechanism of Induced Poplar Resistance to Canker Disease

Du Jianling Xiang Weihua Shen Ruixiang

Abstract The branches of *Populus* \times xiaozhuanica cv. 'Popularis' are induced by rare-earth and Streptomyces jingyanesis 5406 (three concentrations of 100, 500 and 1 000 ppm in both inducers), then inoculated with Dothiorella gregaria. After challenged inoculation, the incidence of disease and disease index dropped with a reduction of $60\% \sim 70\%$ and $29.1\sim73.9$ for the formor and $63.3\% \sim 70\%$ and $51.5\% \sim 65.2\%$ for the latter respectively. The mechanism of resistance to canker disease is a series of physiological changes taking place in the bark of branches after induction. The activity of superoxide reached the maximum after $72\sim96$ hours and then dropped gradually and tended to be stable, the activity of SOD in the induced branches are higher than that in the control ones; the respiration came to the maximum after 48 hours and got weak after 96 hours when disease is going on the total protein of induced branches increased by $2.7\sim5.4$ times while that of the control only 1.9 times. The changes above are related to the concentration of inducers with the larger the concentration the better the effect.

Key words Populus × xiaozhuanica cv. 'Popularis', poplar canker disease, induced resistance, resistance breeding

Du Jianling Lecturer (Hebei Forestry College Baoding, Hebei 071000); Xiang Weihua, Shen Ruixiang (Beijing Forestry. University).