花岗岩黄红壤杉木幼林施肥连年生长效应*

巫流民 李贻铨 胡炳堂 纪建书 陈道东 张 瑛

摘要 $1991 \sim 1995$ 年试验结果表明,在江西分宜花岗岩残积物发育的黄红壤上,杉木幼林施 N、P、K 及配合处理,使树高、胸径、蓄积总生长量指标分别达到 $5.67 \sim 6.59$ m、 $8.35 \sim 9.28$ cm、 $67.922 \sim 96.417$ m³/hm²,较对照增长 $5.6\% \sim 20.2\%$ 、 $7.4\% \sim 17.5\%$ 、 $21.6\% \sim 56.2\%$ 。在各种施肥处理中,以 50 kg/hm² P_2O_5 的效果最佳,其连年生长量效应显著持续到第 5 年;将同等剂量的 N分两次各半施用,其连年生长效应在第 5 年时才有显著表现; K 的连年生长效应仅表现在低剂量分两次隔年施用上;试验未看出 N、P、K 各种配合的交互效应。

关键词 花岗岩发育黄红壤 杉木 施肥效应 连年生长

对杉木 $Cunninghamia\ lanceolata\ (Lamb.)\ Hook.$ 幼林施肥,已有较多的试验研究。李贻铨等 $^{[1,2]}$ 认为 P、K 肥能提高幼林生长;叶仲节 $^{[3]}$ 的研究结果表明施 P 肥初期有效,幼林施 N 肥无效,施 K 肥还会出现负效应。各研究者的结果虽不尽相同,但基本上都是以总生长量来阐述施肥效应的。 然而,连(当) 年生长量则最能反映林木对肥料的效应,包括施肥的当年效应与后效 $^{[2,4,5]}$ 。因此,在前期报告 $^{[6-8]}$ 的基础上,在本实验中心长埠林场荷花山工区继续进行了试验。在简述施肥试验 5 a 总生长量的同时,着重探讨前期报告中没有涉及的连年生长量效应。

1 材料与方法

1.1 试验地概况

有关试验地气候、土壤及造林(1991年3月造林,密度3600株/ hm^2)、抚育管理等概况,详见前期报告 $[6^{-8}]$ 。

- 1.2 试验设计与施肥方法
- 1.2.1 施肥量及配比 试验 设 12 个处理: $P_1, P_2, P_3, N, K_1, K_2, NP_1, NP_2, P_1K_1, P_2K_1, NP_2K_1$ 和 CK(不施肥),重复 3 次。植树前(单施 N, K 的 3 个处理为造林第 2 年 4 月) 和第 3 年 4 月各 施肥料总量的 1/2。

¹⁹⁹⁶⁻¹⁰⁻⁰³ 收稿。

巫流民工程师, 纪建书(中国林业科学研究院亚热带林业实验中心 江西分宜 336600); 李贻铨, 陈道东, 张瑛(中国林业科学研究院林业研究所); 胡炳堂(中国林业科学研究院亚热带林业研究所)。

^{* 1991~1995} 年林业部世界银行贷款国家造林(NAP)项目 "主要树种丰产林施肥技术研究和推广"课题和"八五"国家科技攻关"主要工业用材林施肥技术与维护地力措施研究"部分内容,课(专)题负责人为李贻铨研究员。亚热带林业实验中心长埠林场协助造林并负责管理护林,特此致谢。本文由胡炳堂、巫流民整理执笔。

1.3 试验数据统计分析

每年年底调查胸(地)径、全高,前 4a 总生长量结果见前期报告 $[6^{-8}]$ 。据相邻年总生长量之差计算连(当)年生长量、以小区算术平均值进行方差分析和处理平均数的 LSD 多重比较。

2 结果分析

2.1 杉木幼林施肥5a总生长量

表 1 可见, 在花岗岩残积物发育的黄红壤上, 杉木幼林施 N、P、K 及配合处理(除 K^2 处理 异常外, 参见表 6), 使杉木 5 年生幼林的胸径 DBH、树高 H、蓄积 V 明显高于对照 CK,分别增长 $10.7\% \sim 17.5\%$ 、8.8% $\sim 20.2\%$ 、28.3% $\sim 56.2\%$ 。在各种施肥处理中, 以 P_1 处理, 即将 50 kg/hm² P_2O_5 分一半在造林时作基施、一半在第 3 年 4 月追施的效果最佳, 其 DBH、H、V分别达到 8.87 cm、6.26 m、82.707 m³/hm², 相应 CK 值分别为 7.55 cm、5.21 m、52.945 m³/hm², 分别较 CK 增长 17.5%、20.2%、56.2%。

AL TER		DB	H (cm)			H	(m)			<i>V</i> (m	$^{3}/ \text{ h m}^{2})$	
处 理	均值	差	异	(%)	均值	差	异	(%)	均值	差	异	(%)
P1	8. 87	a	A	117. 5	6. 26	a	A	120. 2	82. 707	a	A	156.2
P ₂	8.36	a	ABC	110.7	5. 67	de	CD	108.8	67. 922	c	BC	128.3
P_3	8.47	a	A	112. 2	5.86	bed	ABCD	112.5	71.482	$_{\mathrm{bc}}$	ABC	135.0
N	8.42	a	AB	111.5	5.88	bed	ABCD	112.9	71. 250	bc	ABC	134.6
K ₁	8.68	a	A	115.0	5.75	cde	BCD	110.4	72.418	bc	AB	136.8
K ₂	7.64	b	BC	101.2	5. 50	ef	DE	105.6	57.015	d	CD	107.7
NP_1	8.56	a	A	113.4	5.75	cde	BCD	110.4	72. 592	bc	AB	137.1
NP_2	8.35	a	ABC	110.7	6.00	abc	ABC	115. 2	71.837	bc	AB	135.7
P_1K_1	8.75	a	A	115.9	6. 12	ab	AB	117.5	79. 817	ab	AB	150.8
P_2K_1	8.61	a	A	114.0	5. 99	abc	ABC	115.0	76. 424	ab c	AB	144.3
NP_2K_1	8.49	a	A	112.4	5. 87	bed	ABCD	112.7	72. 226	bc	AB	136.4
CK	7. 55	b	C	100.0	5. 21	f	E	100.0	52. 945	d	D	100.0
Ft	3. 15*				5. 07* *				4. 16*	*		
MSe	0. 155	554 6	i		0.0464	16 32			51. 217	57		

表 1 杉木施肥量及配比试验 5 a 总生长量

注: N N、P P_2O_5 、K K_2O , CK 为不施肥对照。差异是指在处理间 F_t 显著时进行平均数 LSD 多重比较, 字母表示法: 英文小、大写字母分别表示 $\alpha=0.05$ 、0.05、0.01 水平差异显著。

2.2 杉木幼林施肥的连年生长量效应

2. 2. 1 单桅 N 肥效应 表 2 可见,(1) 在第 2、3 年各施 N 50 kg/hm² 的处理,连年生长量只有第 5 年才出现与 CK 有(极)显著差异,H、DBH、V分别较 CK 增加 61. 3%、24. 5%、51. 0%。(2) 第 2 年一次性施 N 100 kg/hm² 处理,仅有 V 在第 4、5 年分别较 CK 显著提高 23. 7%、20. 4%。(3) 第 3 年一次性施 N 100 kg/hm²,与 CK 无明显生长差异。表明 N 肥分 2 次 施用效果优于一次施用,第 2 年施好于第 3 年施,即主要反映的是第 2 年施 N 的效应 [0.2,4.9]。表 2 还可见,连年生长量肥效低于总生长量。

2. 2. 2 单桅 P 肥效应 对于杉木连(当)年生长量而言,表 3 材料表明: (1) 施 P $_2$ O $_5$ 50 kg/hm $_2$ 的效应大于 100 kg/hm $_2$ 和 200 kg/hm $_3$,与 CK 的差异显著性和增长百分率均反映这种趋势,这从第 1、3 年 2 次各施 1/2 的施肥处理数据中可获得证明。(2) P 肥基施优于追施,凡是第 1 年施过基肥的处理,连年生长量较 CK 的增幅和差异显著性,一般均大于无基肥处理,而且其后效到第 4、5 年仍然明显(参见图 1),而于第 3 年一次性追施 100 kg/hm $_2$ P $_2$ O $_5$ 处理,则效应最差,每年各项连年生长量指标与 CK 差异不显著。(3)相同剂量 P 肥(100 kg/hm $_2$ P $_2$ O $_5$) 于造林时一次性施用的效应,每年各项连年生长量指标与 CK 的差异显著性与增幅,一般均大于分 2 次(第 1、第 3 年或第 2、第 3 年)的处理,其后效也大。(4) 用胸高断面积 BA 和地径断面积 BA 来反映连年生长量的肥效较胸径和地径更为适宜 $_3$ 0 $_4$ 1 $_5$ 1 $_5$ 2 $_5$ 3 $_5$ 4 $_5$ 5 $_7$ 1 $_5$ 5 $_7$ 5 $_7$ 6 $_7$ 7 $_7$ 8 $_7$ 9 $_7$

表 2 单施 N(尿素) 与不施肥 CK 的杉木生长比较

(单位:%)

水平(k	g/ hm ²)						100)					
施N	次数		2				1	l			1		
树龄(a)	(处理)	2(50)	3(50)	4	5	2(100)	3	4	5	2	3(100)	4	5
	H	109. 9	105.3	104. 9	112. 9* *	105. 1	105.7	104. 2	106.2*	105.1	104. 4	101.5	101.6
总生	DBH	138. 7*	117.1*	109. 4*	111. 5* *	107. 8	109.0	109. 5*	107.4^{*}	107.8	107. 8	105.8	105.2
长量	V	21 1. 8*	143.7	123. 8*	134. 6* *	121.6	125.5	124. 2*	122.4*	120.0	120. 6	113.4	112.7
当年	H	105. 5	99.2	104. 2	161. 3* *	103. 8	107.1	101. 2	113.6	102.8	103. 6	95.7	102.3
生长	DBH		107.1	98. 1	124. 5*		109.5	110. 3*	98.7		107. 8	102.8	101.9
	V		139.3	117. 1	151. 0* *		125.7	123. 7*	120.4*		120. 6	111.0	111.9

注:以 C K 的生长为 100%; *、** 指生长量经 LSD 检验与 C K 的差异达 c= 0.05、c= 0.01 显著水平。

表 3 单施 P(钙镁磷肥)与 CK(不施肥)的杉木当年生长比较

(单位:%)

W = # K	4~4 Ib A	施 P 水平(kg/ hm ²) / 方式						
当年生长 指标	树龄 (a)	50			200			
	(a)	2(1, 3)	2(1, 3)	2(2, 3)	1(1)	1(2)	1(3)	2(1, 3)
H	1	152. 9* *	131. 7*	119. 5	131. 7*	119. 5	117. 1	135. 3*
	2	121. 1* *	114. 2*	106. 6	112. 3	112. 3	102.8	114. 7*
	3	98. 4	103.6	114. 3* *	109. 3*	107. 8	106. 4	88. 4* *
	4	109. 0	100.0	97. 6	98.8	93. 3	93.9	102.8
	5	169. 3* *	116. 9*	112. 1	108. 3	109.8	115. 2	165. 3* *
GLD	1	156. 3* *	126. 0*	119. 2	132. 9*	115. 1	115. 1	129. 6*
	2	130. 2* *	114. 4*	109.6	99. 6	107. 9	106. 1	117.8*
DBH	3	110. 5	116. 2*	114. 4* *	116. 6* *	112.0*	109. 5	105. 2
	4	101. 1	105.0	107. 5*	106. 4	105. 0	106.8	102. 3
	5	120.8	101.3	95. 5	86. 5	94. 9	92. 3	115. 1
GBA	1	187. 1* *	141. 8*	135. 0	155. 9* *	126. 6	125. 2	147. 5*
	2	168. 1* *	132. 4*	123. 1	112. 2	119. 1	115.4	137. 6*
BA	3	151. 1*	140. 9*	131. 8*	141.4**	129. 8*	116.7	133.0
	4	122. 4*	121.8*	121. 7* *	123. 3* *	117. 3* *	115. 1*	116. 6*
	5	131. 4*	105.5	106. 9	100.6	104. 7	98.0	119. 5
V	3	171. 5* *	153. 7*	144. 8*	157. 4* *	141. 7*	122. 8	140. 4
	4	139. 7* *	130. 6* *	128. 3* *	132. 8* *	121. 5*	116.0	122. 9*
	5	165. 5* *	118.0*	121.4*	120.0*	116. 6	110.9	144. 3* *

注: 方式表示为: 施 P 次数(第 1 次年份,第 2 次年份),只有一个年份数则为该剂量一次性施用,两个年份数则为等量各半施用。GLD、GBA、BA 分别指地径、地径断面积、胸高断面积。其余说明同表 2。

2. 2. 3 单施 K 肥效应 表 4 可见, 只有将 $100 \text{ kg/hm}^2 \text{ K}_2\text{O}$ 于第 2、3 年分两次各半施 用的处理, 其第 2 年抽高较 CK 显著增长 14.7%, 第 3、4、5 年后效的 BA、V 也显著高于 CK, 而其它 3 种施 K 肥处理未表现明显 效应。说明 K 肥的连年生长效应仅表现在低剂量分两次隔年施用上, 这与表 1 总生长量 结果一致、参见图 1。

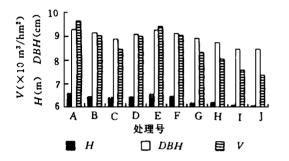


图 1 施肥时间与 5年生杉木林总生长量

表 4 单施 K(氯化钾)与 CK 的杉木连年生长比较

				(单位:	%)
ゲケチレ	+n+ 1E∧	施 K	水平(k g	g/ hm²) / ブ	式
连年生长 指标	树龄 (a)		100		200
יטיםנ	(a)	2(2, 3)	1(2)	1(3)	2(2, 3)
H	1	129. 4	104. 9	97. 6	102. 9
	2	114. 7*	100.0	92. 4	110. 1
	3	101.6	107.1	108.6	89. 9*
	4	101.4	90.8*	90. 8*	103. 5
	5	133. 3	110.6	109. 1	132. 0
GBA	1	124. 7	119.8	98.0	113. 2
	2	125. 9	107.7	77. 4	112. 9
BA	3	141.9*	111.3	86. 5	122. 2
	4	119. 3*	107.6	105.0	106. 6
	5	129. 0*	103.4	108. 2	79.4
V	3	154. 2*	116.2	87. 8	124. 3
	4	129. 4* *	106.4	99. 1	110.4
	5	136. 9*	109.6	110. 2	97. 4

注: 有关说明同表 3。

2. 2. 4 N、P、K 贮配合施用 表 5 是同等施 P 肥剂量(P_1 水平, 50 kg/hm² P_2O_5)下,配合 N、K 肥处理的连年生长量比较,可见均与 CK 有显著差异。以 H 指标比较, P_1 抽高均为最大(除第 3 年时 P_1K_1 外); BA、V 指标趋势相似, P_1 与 NP1 在第 5 年时均差异显著,其它年份亦非常接近最高。从而在连年生长量效应上也说明了 P_1 是最佳的处理[7]。 P_2 处理的总生长量、连年生长量均低于 P_1 处理(参见表 1、3), P_2 配合 N、K 的连年生长分析表明, P_2 与 NP2、 P_2K_1 、NP2 K_1 (参见表 5)以及 N、 K_1 6 个处理间,除在第 4 年的 BA、V 指标 P_2K_1 较 N、 NP_2 (极)显著超过外,其它各年各个指标上均无明显差异。对数据综合分析说明,在本试验花岗岩残积物发育的黄红壤上,杉木幼林进行 N、P、K 配合施用,不仅没有表现出正向交互作用,还间或出现了 N、P 配合的负向交互效应。

表 5 P_1 及其配合 $N \setminus K$ 肥处理对杉木连年生长量的影响

年生长量指标	<u> </u>		H(m)			В	A (m²/ hm²)	1	$V(m^3 / h m^2)$	
树龄(a)	1	2	3	4	5	3	4	5	3	4	5
P ₁	0. 52 a	1. 32 a	1. 27 ab	1. 57 a	1. 27 a	5. 748 a	9. 482 ab	6. 191 a	12. 938 a	33. 417 a	34. 768 a
NP_1	0.48 a	1. 21 a	$1.21~\mathrm{bc}$	1.43 a	1. 13 a	5.406 a	9.512 ab	5.417 ab	11. 583 a	30. 788 ab	29.076 b
P_1K_1	0.50 a	1. 25 a	1. 33 a	1.51 a	1. 24 a	5. 982 a	9.853 a	5.447 ab	12. 983 a	33. 677 a	31. 931 ab
NP_2K_1	0.47 a	1.31 a	1. 17 c	1.51 a	1. 13 a	5. 527 a	$8.343~\mathrm{bc}$	5.926 a	12. 396 a	28. 430 b	30.564 ab
CK	0.34 b	1.09 b	1. 29 ab	1.44 a	0.75 b	3.805 b	7.749 c	4.712 b	7. 546 b	23. 913 c	21.003 с

注: 数据后面不同字母间,指该同一树龄时,各处理年生长量间经 LSD 检验 $\alpha=0.05$ 显著差异。

2.3 施肥时间与肥效

2. 3. 1 不同施肥时间与杉木 5 年生 幼林总生长 量 图 1 可见差异趋势与前期 4 a 结果 $^{[7]}$ 基本相同。同等剂量时, (1) 5 个施 P 时间(还有分配方式)中, 4 个处理(A、B、D、E)的蓄积量与 CK

仍有(极) 显著差异, 较 CK 超过 16.015~22.298 m^3/hm^2 , 增幅为 21.6%~30.1%(比上年减少 5.2~12.0 个百分点), 另 1 个处理(C)则与 CK 无差异; 并且 A 处理在 V 指标上显著超过 C 处理 11.671 m^3/hm^2 。(2) 第 2 年施 N 肥(处理 F), 其蓄积量亦较 CK 显著超出 16.578 m^3/hm^2 ,而第 3 年施 N 肥(处理 G)则既与处理 F, 也与 CK 无明显差异。(3)不同时间施 K 肥(处理 H, I)之间、及与 CK 无明显差异。

2. 3. 2 不同 施肥时间 的 杉 木 幼林连 年生长 量 综合分析表 $2 \sim 4$ 可见, 在同等剂量下, 不同施 P 时间 的 杉 木 幼林连年生长有明显差异。造林时一次性施基肥处理(A) 的连年生长显著优于在第 3 年一次性施 P 的处理(C), 而在第 2 年一次性施 P(处理 B)的效果则居于其间, 将该剂量的 P 分两次各半施用(D、E)的效果较处理 A 略低, 但略高于处理 B。不同时间施 N、K 肥的连年生长量效应,则无明显差异。

3 结论与讨论

- (1) P 肥效应 南方红壤地区, P 素缺乏往往是限制杉木生长的重要因子之一 $^{[10]}$ 。普遍认为杉木幼林生长对 P 肥的反应大于其它肥料 $^{1\sim 3]}$ 。本试验前期 4 a 报告中得出将 $50~{\rm kg/hm}^2$ P2O5 分两次于造林时施基肥和造林后第 3 年作追肥施入, 其肥效量大, 蓄积增幅为 $65.5\%^{[7]}$ 。对第 5 年观测继续保持了这一结果, 该处理的蓄积量较对照增加 $29.762~{\rm m}^3/{\rm hm}^2$, 增幅为 56.2% (较上年减少了 9.3 个百分点)。分析说明, 将 $50\sim 200~{\rm kg/hm}^2$ P2O5 分两次基、追各半隔年施用, 或将中量 P 在造林时作基肥一次性施入, 其连年生长量效应一直延续到第 5 年仍(极) 显著, 但从减少施肥成本 $^{[9]}$ 考虑, 将 $50~{\rm kg/hm}^2$ P2O5 的钙镁磷肥在造林时一次性施作基肥为好。
- (2) N 肥效应 以前的一些研究认为, 杉木幼林施 N 肥效果不明显, 如施 N 肥量过大, 还会烧伤幼树^[1~3]。对本试验的连年生长量分析表明, 将 $100~kg/hm^2$ 的 N 肥一次性施用, 与 CK 差异不大; 但将该剂量的 N 肥分两次各半隔年施用, 则在第 5 年时出现显著效应, 尽管施 N 肥在总生长量上效应明显, 蓄积量较 CK 增加 $18.305~m^3/hm^2$, 增长 34.6%, 仍说明对速效性的 N 肥, 适宜采用少量分次施用的方法 [9]。鉴于施 N 肥的杉木幼林 5~a 总生长量增长效应明显低于 P 肥, 因此生产上没有施 N 肥的必要。
- (3) K 肥效应,将 $100 \text{ kg/hm}^2 \text{ K}_2\text{O}$ 分两次 各半分别在第 2、3 年施用,其连年生长量效应 显著延续到第 5 年;但将该剂量的 K 肥一次性施用或加倍剂量分两次施用,则在连年生长上与 CK 并无明显差异,亦未见到前期报告中由总生长量指标得出的负效应^[7] 的结论。对原始数据的考察(表 6) 说明,施用 K_2 处理的 、

两个区组的小区平均值与 K_1 处理的三个区组相当或略低,只有第 区组的数据表现明显偏低,其各年 V 值只有其它两个区组或同

表 6 杉木幼林施肥量及配比试验施 K 肥处理的蓄积量(小区中心 16 株算术平均值)

		(单位: m³/ hm²)
	K ₁ 处理	K ₂ 处理
2	1. 000 0. 871 1. 348	0.714 0.267 1.365
3	12. 256 12. 017 13. 853	10. 562 5. 871 14. 062
4	41. 346 36. 184 53. 464	38. 365 24. 015 47. 281
_ 5	70. 117 63. 813 83. 324	63. 219 39. 658 68. 167
	: K 肥施用量见 1.2.1节 引高、径值。	。 、 、 为区组号。限于篇

为 区组的 K_1 处理的 60% 左右。对这种因一个数据引起分析结果出现歧误的特殊情况,经过采取变更数据统计方法 [11],即将 K_2 处理的第 区组数据作为缺区处理,结果表明, K_2 处理无论是在总生长量还是在连年生长量上,均与 K_1 处理不相上下。因此,若根据本试验花岗岩发

育的红壤, 较其它母岩发育的土壤具有钾素供应潜力较高的特点 $[^{2}]$, 得出施高剂量的 $[^{1}]$ 放或产生负效应 $[^{3,7}]$ 的结论则应慎重。但根据施 $[^{1}]$ 肥的 $[^{5}]$ 年生杉木幼林总生长量增长效应显著低于 $[^{1}]$ 肥的结论, 说明在生产上施 $[^{1}]$ 服的无必要。

- (4) 对 N、P、K 肥及其配合的连年生长量效应分析表明, 在本试验土壤立地条件下, P 肥的效应最大, N、K 肥的效应虽较 P 肥低, 但没有表现出象总生长量那样存在显著的差异; 同时, 试验没有显示出 N、P、K 肥各种配合的交互效应。
- (5) 对杉木幼林的 N、P、K 肥及其配合施肥试验数据的分析表明,总生长量是衡量杉木生长反应的重要指标 $^{[1^{-3,5,9}]}$,但对施肥效应,尤其是后效的分析,连年生长量则是一个较为适宜的指标 $^{[1,4,5]}$ 。就林分径生长而言,采用胸高断面积 BA 比胸径 DBH 能更好地反映施肥的连(3) 年生长量效应 $^{[4,5]}$ 。

参 考 文 献

- 1 李贻铨, 徐清彦, 刘仲君, 等. 杉木幼林前 5 年施肥效应研究. 土壤通报, 1991, 22(1): 28~31.
- 2 杉木施肥试验课题协作组. 杉木幼林施肥效应研究. 见: 盛炜彤主编. 人工林地力衰退研究. 北京: 中国科学技术出版社. 1992. 198~211.
- 3 叶仲节. 浅谈杉木育苗造林中的施肥问题. 浙江林学院学报, 1985, (1): 13~20.
- 4 Wells C G, Crutchfield D M, Trew I F. Five-year volume increment from nitrogen fertilization in thinned plantations of pole-size loblolly pine. Forest Sci., 1976, 22(1):85 ~ 90.
- 5 胡炳堂, 洪顺山, 肖齐绪, 等, 湿地松幼林施肥研究, 林业科学研究, 1995, 8(4): 380~387,
- 6 巫流民, 纪建书, 陈道东, 花岗岩立地杉木幼林施肥效应, 林业科技通讯, 1994, (6): 17~19.
- 7 陈道东, 李贻铨, 张瑛, 等. 花岗岩立地上杉木幼林施肥生长效应. 林业科学研究, 1996, 9(林木施肥与营养专刊): 34~40.
- 8 纪建书, 巫流民, 杉木幼林施肥时间效应研究, 林业科技通讯, 1996, (6): 32~33.
- 9 李贻铨, 主要用材树种施肥技术, 北京: 中国科学技术出版社, 1992,
- 10 廖宗文, 林东教, 王建林. 红壤的磷肥有效性差异及其土壤化学特点的初步研究. 华南农业大学学报, 1996, 17(1):67~71.
- 11 裴鑫德, 多元统计分析及应用, 北京: 北京农业大学出版社, 1991.

The Current Annual Increment Response of Yong Chinese Fir Plantation to Fertilization on Granite Yellow-red Earth

Wu Liumin Li Yiquan Hu Bing tang Ji Jianshu Chen Daodong Zhang Ying

Abstract This paper reports the results of a five-year research on current annual increment response to fertilization in young Cunninghamia lanceolata plantation on the yellow-red earth developed from granite in Fenyi County of Jiangxi Province. The effectiveness of N, P, K and its combined application was tangible in this young plantation. The total growth of height (H), diameter breast-high (DBH), volume-increment of whole woods V of treatment plots amounted to 5. 67 ~ 6. 59 m, 8. 35 ~ 9. 28 cm, 67. 922 ~ 96. 417 m³/hm², which were 5. 6% ~ 20. 2%, 7. 4% ~ 17.5%, 21. 6% ~ 56. 2% over check (CK) plots respectively. And the current annual increment response was analyzed. The effect of $50 \text{ kg/hm}^2\text{ P}_2\text{O}_5$ (Calcium magnesium phosphate) as half the amount as basal fertilization and the other half as top-dressing at the third year time or once basal was the best, it s current annual increment response was obvious in the first year of planting and lasted to the fifth year. The effect of the same application amount of N (Urea) as half the amount for top-dressing for two times was better than that of once. The response of K (Potassium chloride) application appeared when it s applied with lower amount for two times in two years. There was no obvious interaction response of the application of N, P, K.

Key words yellow red eathe developed from granite Chinese fir fertilization response current annual increment

Wu Liumin, Engineer, Ji Jianshu (The Experimental Centre of Subtropical Forestry, CAF Fenyi, Jiangxi 336600); Li Yiquan, Chen Daodong, Zhang Ying (The Research Institute of Forestry, CAF); Hu Bingtang (The Research Institute of Subtropical Forestry, CAF).