文章编号: 1001 1498(2002) 03 0361 03

细菌肥料促进马尾松生长效应的研究

杨承栋1、焦如珍1、孙启武1、卢立华2

(1. 中国林业科学研究院林业研究所,北京 100091; 2. 中国林业科学研究院热带林业实验中心,广西 凭祥 532600)

关键词: 马尾松: 细菌肥料: 生长效应

中图分类号: S725.5 S144 文献标识码: A

马尾松(pinus massoniana Lamb.)是我国主要造林树种,产于我国南部,是亚热带东部湿润地区典型的针叶树种,广泛分布于全国的15个省区,占全国用材林面积的17.6%;近年来,马尾松人工林土壤立地质量退化、土壤性质恶化,病虫害时有发生,特别是在中、下等立地条件地区较为严重,引起林业工作者的普遍关注;合理施用化肥可以促进林木生长,然而,按目前林场的实际情况,大面积施用还很不现实,兼之施用化肥很容易造成环境污染,不利于土壤性质的改良。细菌肥料具有用量少、使用方便的优点,能促进林木生长、较好地改良土壤,增强林木的抗逆性,又不容易污染环境等,在未来的林业生产中,将具有广阔的应用前景[13]。

1 实验地区的自然地理概况

试验地点位于广西南部大青山(21° 57 47' 22° 19 27' N, 106° 39 50' 106° 59 30' E), 属丘陵地区, 海拔高度 600 m, 属南亚热带季风气候, 干湿季节交替明显, 年平均气温 21.4 C, 最冷的 1月份平均气温 13 C, 极端最低气温— 1.5 C, 最热的 7月份平均气温 27.5 C, 极端最高气温 39.8 C, \geq 10 C积温 7818.4 C, 年平均降水量 1379 mm, 蒸发量为 1300 1700 mm, 试验地区母岩为花岗岩。

2 研究方法

2.1 试验设计

试验林为 1 年生马尾松人工林, 平均高 86.5 cm, 平均地径 1.78 cm。菌肥作为追肥施用, 试验采用随机区组设计, 整个试验共分为 4 个区组, 每个区组内设 9 个处理, 每种菌肥为 1 个处理, 其中包括 1 个不施肥的对照处理, 这些菌肥分别是: 1. 假单胞菌 1 号菌株(Pseunomonas sp. N_1); 2. 沙雷氏菌(Seratia); 3. 克雷伯氏菌(Seratia); 4. 芽胞杆菌(Seratia); 5. 假单胞菌 (Seratia); 7. 肠杆菌(Seratia); 8. 复合菌肥。 Seratia 是从俄罗斯引进外, 其它菌株均是本森林土壤研究室分离、并在室内和中国科学院 微生物所鉴定。复合菌肥是由 1 7 号菌肥混合而成。每个处理共有 24 株树, 试验样地设置在同一坡向、同一坡面的山坡上。

收稿日期: 2000-11-29

基金项目:国家"九•五"攻关专题"纸桨材林微生物应用及施肥技术研究"

作者简介: 杨承栋(1941), 男, 安徽巢湖人, 研究员.

2. 2 试验方法及观测时间

在每株树四周, 挖深度为 20 cm 的细沟, 沿沟施每种细菌肥料, 每株树施 12 g 菌肥, 然后覆土。施肥前即 1997 年 8 月, 对马尾松幼龄林的生长状况, 如树高、地径、左右冠幅和上下冠幅进行了本底值测定, 施肥后第二年即 1998 年 5 月进行第二次测定。

3 结果与分析

为了观测不同细菌肥料对马尾松生长影响的效用,施用细菌肥料 9 个月后,对马尾松树高增长量、地径生长增长量、左右冠幅增长量以及上下冠幅增长量进行了逐株调查,调查与计算结果见表 1、2。

3.1 不同细菌肥料对马尾松树高和地径生长的影响

表 1 说明,除 Enterobacter 菌肥外,其余 7 种细菌肥料施用后树高的增长量都在 14%以上,其中 Klebiella、Bacillus 和复合菌肥 3 种细菌肥料的增长量达到 25%以上;除复合菌肥以外,其余 7 种菌肥的地径增长幅度达到 10%以上,其中 Azotobacter 菌肥的地径增长幅度达到近25%, Bacillus 菌肥的地径增长幅度达到 35%以上。

		树高							地径						
菌肥1)	区组(Xi)/m				<u></u>	增长/%(增长量	区组(Xi)/m					增长/%(增长量			
	1	2	3	4	Xi/ m	与对照相比)	1	2	3	4	Xi/m	与对照相比)			
1	0 84	0 81	0 69	0. 60	0. 735	17. 98	1. 22	1. 24	2 09	1. 18	1. 43	10 85			
2	1.03	0 67	0 66	0. 50	0. 715	14 77	1.86	1. 15	1. 29	1. 40	1. 43	10 85			
3	0 76	0 73	0 90	0. 79	0. 795	27. 61	1.72	1. 17	1. 59	1. 57	1.51	17. 05			
4	0 90	0 69	0.78	0. 82	0. 798	26 65	1.80	1. 68	1.69	1. 94	1. 78	37. 98			
5	0 86	0 62	0 84	0. 62	0. 735	17. 98	1. 79	1. 26	1. 72	1. 35	1. 53	18 60			
6	0 65	0 88	0.75	0. 70	0. 745	19 58	1. 55	1. 73	1. 63	1. 48	1.60	24 03			
7	0 80	0 69	0.70	0. 54	0. 683	9 63	1. 74	1. 44	1. 35	1. 64	1. 54	19.38			
8	0 84	0 94	0 81	0. 59	0. 795	27. 61	1. 35	1. 42	1. 68	1. 00	1. 36	5 43			
对照	0.70	0 67	0 62	0.50	0. 623	1. 20	1. 20	1. 33	1. 43	1. 29					

表 1 不同菌肥对马尾松高和地径生长的影响

注: 1) 1. 假单胞菌 1 号菌株, 2 沙雷氏菌, 3. 克雷伯氏菌, 4. 芽胞杆菌, 5. 假单胞菌 2 号菌株, 6. 固氮菌, 7. 肠杆菌, 8. 复合菌肥(1. 7菌肥混合而成)。 2) 表中数据为 24 株树的平均值。

表 2 不同菌肥对马尾松左右冠幅和上下冠幅生长的影响

	左右冠幅							上下冠幅						
菌肥1)	区组(Xi)/m					增长/%(增长量	区组(Xi)/m					增长/%(增长量		
	1	2	3	4	Xi/ m	与对照相比)	1	2	3	4	Xi/m	与对照相比)		
1	0 34	0 42	0 58	0. 38	0.43	19 44	0 38	0 45	0 54	0. 36	0.43	16 22		
2	0 56	0 31	0 38	0. 35	0.40	11. 11	0 43	0 30	0 42	0. 29	0.36	- 2 70		
3	0 49	0 31	0 52	0. 39	0.43	19 44	0 50	0 31	0 57	0. 30	0.42	13 51		
4	0 61	0 46	0 44	0. 44	0.49	36 11	0 57	0 38	0 39	0.40	0.44	18 92		
5	0 52	0 41	0 48	0. 22	0.41	13 89	0 52	0 28	0 47	0. 32	0.40	8 11		
6	0 33	0 65	0 54	0. 36	0.47	30 56	0 33	0 63	0 40	0. 35	0.43	16 22		
7	0 46	0 40	0 44	0.46	0.44	22 22	0 43	0 42	0 43	0. 45	0.43	16 22		
8	0 32	0 39	0.50	0. 29	0.38	5 56	0 50	0 40	0.50	0. 34	0.44	18 92		
对照	0 25	0 35	0 47	0. 38	0.36		0 42	0 31	0 40	0. 34	0.37			

注: 1) 1. 假单胞菌 1 号菌株, 2 沙雷氏菌, 3 克雷伯氏菌, 4 芽胞杆菌, 5 假单胞菌 2 号菌株, 6 固氮菌, 7 肠杆菌, 8 复合菌肥(1 7菌肥混合而成)。 2) 表中数据为 24 株树的平均值。

3.2 不同菌肥对马尾松左右冠幅和上下冠幅生长的影响

表 2 说明,除复合菌肥外, 其它 7 种菌肥使左右冠幅增长幅度在 10% 以上, 其中 *Pseudomonas* sp. N₁、*Klebsiella* 的增长幅度接近 20%, *Bacillus* 和*Azotobacter* 的增长幅度在 30% 以上; *Serratia* 使上下冠幅的生长量降低, 比对照低 2.70%, *Pseudomonas* sp. N₂菌肥使上下冠幅增长了 8.11%, 其余 5 种菌肥的增长幅度均为 15% 20%。

4 结论

菌肥施用于马尾松 1 年生幼林 10 个月后, 能够明显促进其生长: *Pseudomonas* sp. N₁菌肥可使树高生长增长 17. 98%、地径增长 10. 85%、左右幅度增长 19. 44%; *Serratia* 菌肥可使树高生长增长 14. 77%、地径增长 10. 85%、左右冠幅增长 11. 11%; *Klebsiella* 菌肥可使树高生长增长 27. 61%、地径生长增长 17. 05%、左右冠幅增长 19. 44%; *Bacillus* 菌肥可使树高生长增长 26. 65%、地径增长 37. 98%、左右冠幅增长 36. 11%; *Pseudomonas* sp N₂ 菌肥可使树高生长增长 17. 98%、地径增长 18. 60%、左右冠幅增长 13. 89%; *Azotobacter* 菌肥可使树高生长增长 19. 58%、地径增长 24. 03%、左右冠幅增长 30. 05%; *Enterobacter* 菌肥可使树高生长增长 9. 63%、地径增长 19. 38%、左右冠幅增长 22. 22%; 复合菌肥可使树高生长增长 27. 61%、地径增长 5. 43%、左右冠幅增长 5. 56%。

参考文献:

- [1] Бабъева И П., Зенова Г М. Биология почв Москва: Идатедъство Москов ского Университета. 1989
- [2] Пейве Я В. Биохим ия почв. Москва: Госуда рственное Издатедвство Се льскохозяйственной Литературы, Журна лов и Плакатов, 1961
- [3] Березова Е Ф. Бактериа льные удобрения. Ленинград: ИЗдате дъство Се в скохоз яйственной Литературы, Журна лов и Плакатов, 1961

Effect of Bacterial Fertilizers on Promoting the Growth of Masson Pine

 $YANG\ Cheng-dong^1$, $JIAO\ Rurzhen^1$, $SUN\ Qi-wu^1$, $LU\ Li-hua^2$ (1. Research Institute of Forestry, CAF, Beijing 100091, China;

2. Tropical Forestry Experimental Centre, CAF, Pingxiang, Guangxi 532600, China)

Abstract: The effects of different kinds of bacterial fertilizer on the growth of *pinus massoniana* were studied. The results showed that as a fast-growing tree species, 1-year old *P. massoniana* could growth faster by using bacterial fertilizer, especially by using *Bacillus* and *Pseudomonas*. Ten months after fertilizing *Bacillus* and *Pseudomonas*, the average increment of height reached 30. 34% and 21. 29%, the average basal area increased by 36. 40% and 22. 56%, and the crown breadth increased by 46. 21% and 31. 84% respectively.

Key words: Pinus massoniana; bacterial fertilizer; growth effect